Findings suggest that PER3 gene variants prevent adrenal adaptation to winter daylight, leading to serotonin disruption and depression-like behaviors.
A recent study in Nature Metabolism used humanized mice with modified PERIOD3 gene variants (P415A and H417R) to explore the genetic role in winter seasonal affective disorder (SAD). Male mice exposed to short, winter-like daylight showed SAD-like behaviors, validating them as potential models for SAD research.
The study revealed that these gene variants increase corticosterone biosynthesis and disrupt HPA axis regulation, leading to elevated glucocorticoid signaling. This signaling represses Tryptophan hydroxylase 2 (Tph2), resulting in depression-like behaviors.
Study background
Several human physiological processes and clinical conditions exhibit seasonal rhythms, often linked to increases in pathogen or vector populations (in the case of transmissible diseases) or changes in environmental cues (such as mood and physiological shifts due to jetlag).
A growing body of research describes seasonal trends in psychiatric disorders, with conditions like depression, schizophrenia, and suicidal tendencies peaking during specific times of the year and subsiding during others.
The most well-documented of these trends is “winter seasonal affective disorder” (SAD), a relatively rare condition marked by the predictable onset of depressive episodes in autumn and winter, with remission in spring and summer.
SAD affects an estimated 1-10% of the population, with symptoms that can persist for up to 40% of the year, causing significant distress for patients and their families. Previous research has suggested that circadian misalignments and associated changes in monoamine neurotransmitters may play a role in SAD, but the precise mechanisms and potential genetic factors remain unconfirmed.
About the study
In their previous work, the present study group identified genetic variants of the PERIOD3 (PER3) gene that demonstrate advanced sleep patterns and seasonal mood alterations reminiscent of SAD. Called ‘P415A’ and ‘H417R’, these variants could hold the key to understanding SAD and form the basis of future therapeutic interventions against the debilitating condition.
The study used humanized mice (C57BL/6J and B6.129) genetically modified to express P415A and H417R for experimental procedures. Case (P415A or H417R) and control (wild type [WT]) mice were raised under varying daily light and dark cycles to simulate winter photophases. Advanced biochemical assays (immunoblotting, reverse transcription polymerase chain reaction [RT-PCR], plasma corticosterone assessments) were used to monitor both cohorts’ responses to photoperiod alterations.
Social interaction tests, tail suspension tests (TSTs), and forced swim tests (FST) were used to assess mood and behavioral alterations during experimental exposures (varying photoperiods).
Once the study had established the association between SAD and the genetic variants under study, Fluoxetine hydrochloride was administered to evaluate the mechanisms governing these associations.
Fluoxetine hydrochloride functions as a serotonin uptake inhibitor and helps reveal the importance of neurotransmitter concentrations and signaling under these conditions.
Study findings
Comparisons between case and control mice exposure to 4 h light-20 h dark (4L20D; “winter”) and 12 h light-12 h dark (12L12D; “normal”) photoperiods revealed substantial differences between carriers of the WT PER3 gene and those with the P415A or H417R variants.
Under 4L20D conditions, case mice were observed to significantly underperform controls in both TST and FST tests, displaying extended latency and immobilization across both examinations. These observations are nearly identical to the behavioral responses of SAD patients.
Social experiments revealed similar trends. Cases exposed to winter photoperiods displayed SAD-like isolation tendencies absent in controls.
These findings verify the humanized murine models used herein as apt representations of SAD across both physiology and behavior. Furthermore, these changes were reversed when mice were returned to 12L12D photoperiods.
Biochemical assays, in contrast, reported unexpected increases in corticosteroid concentrations.
Unlike previous studies, which regularly observed decreases or no changes in corticosteroid quantities, mice with P415A or H417R unregulated their neurotransmitter concentrations compared to controls, which downregulated corticosteroid production.
Fluoxetine hydrochloride drug administration was observed to rescue case mice both from corticosteroid upregulation and holistic SAD symptoms. Surgical removal of the adrenal glands (adrenalectomy) produced similar results.
Conclusions
The present study presents one of the first pieces of evidence of a genetic underpinning (herein, variants of the PER3 gene) governing periodic cyclic psychiatric states.
Experiments on humanized murine model systems revealed that P415A and H417R variants unregulated (rather than downregulated) corticosterone production, thereby disrupting normal stress responses and triggering situation-dependent depression.
These findings advance our understanding of the pathophysiology of SAD, provide a model system for future investigation (humanized mice), and highlight corticosterone modulation as a potential therapeutic intervention against human SAD.
- Gao, Q., Tang, Z., Wang, H. et al. (2024) Human PERIOD3 variants lead to winter depression-like behaviours via glucocorticoid signalling. Nat Metab. doi:10.1038/s42255-024-01163-z.https://www.nature.com/articles/s42255-024-01163-z

News
How the FDA opens the door to risky chemicals in America’s food supply
Lining the shelves of American supermarkets are food products with chemicals linked to health concerns. To a great extent, the FDA allows food companies to determine for themselves whether their ingredients and additives are [...]
Superbug crisis could get worse, killing nearly 40 million people by 2050
The number of lives lost around the world due to infections that are resistant to the medications intended to treat them could increase nearly 70% by 2050, a new study projects, further showing the [...]
How Can Nanomaterials Be Programmed for Different Applications?
Nanomaterials are no longer just small—they are becoming smart. Across fields like medicine, electronics, energy, and materials science, researchers are now programming nanomaterials to behave in intentional, responsive ways. These advanced materials are designed [...]
Microplastics Are Invading Our Arteries, and It Could Be Increasing Your Risk of Stroke
Higher levels of micronanoplastics were found in carotid artery plaque, especially in people with stroke symptoms, suggesting a potential new risk factor. People with plaque buildup in the arteries of their neck have been [...]
Gene-editing therapy shows early success in fighting advanced gastrointestinal cancers
Researchers at the University of Minnesota have completed a first-in-human clinical trial testing a CRISPR/Cas9 gene-editing technique to help the immune system fight advanced gastrointestinal (GI) cancers. The results, recently published in The Lancet Oncology, show encouraging [...]
Engineered extracellular vesicles facilitate delivery of advanced medicines
Graphic abstract of the development of VEDIC and VFIC systems for high efficiency intracellular protein delivery in vitro and in vivo. Credit: Nature Communications (2025). DOI: 10.1038/s41467-025-59377-y. https://www.nature.com/articles/s41467-025-59377-y Researchers at Karolinska Institutet have developed a technique [...]
Brain-computer interface allows paralyzed users to customize their sense of touch
University of Pittsburgh School of Medicine scientists are one step closer to developing a brain-computer interface, or BCI, that allows people with tetraplegia to restore their lost sense of touch. While exploring a digitally [...]
Scientists Flip a Gut Virus “Kill Switch” – Expose a Hidden Threat in Antibiotic Treatment
Scientists have long known that bacteriophages, viruses that infect bacteria, live in our gut, but exactly what they do has remained elusive. Researchers developed a clever mouse model that can temporarily eliminate these phages [...]
Enhanced Antibacterial Polylactic Acid-Curcumin Nanofibers for Wound Dressing
Background Wound healing is a complex physiological process that can be compromised by infection and impaired tissue regeneration. Conventional dressings, typically made from natural fibers such as cotton or linen, offer limited functionality. Nanofiber [...]
Global Nanomaterial Regulation: A Country-by-Country Comparison
Nanomaterials are materials with at least one dimension smaller than 100 nanometres (about 100,000 times thinner than a human hair). Because of their tiny size, they have unique properties that can be useful in [...]
Pandemic Potential: Scientists Discover 3 Hotspots of Deadly Emerging Disease in the US
Virginia Tech researchers discovered six new rodent carriers of hantavirus and identified U.S. hotspots, highlighting the virus’s adaptability and the impact of climate and ecology on its spread. Hantavirus recently drew public attention following reports [...]
Studies detail high rates of long COVID among healthcare, dental workers
Researchers have estimated approximately 8% of Americas have ever experienced long COVID, or lasting symptoms, following an acute COVID-19 infection. Now two recent international studies suggest that the percentage is much higher among healthcare workers [...]
Melting Arctic Ice May Unleash Ancient Deadly Diseases, Scientists Warn
Melting Arctic ice increases human and animal interactions, raising the risk of infectious disease spread. Researchers urge early intervention and surveillance. Climate change is opening new pathways for the spread of infectious diseases such [...]
Scientists May Have Found a Secret Weapon To Stop Pancreatic Cancer Before It Starts
Researchers at Cold Spring Harbor Laboratory have found that blocking the FGFR2 and EGFR genes can stop early-stage pancreatic cancer from progressing, offering a promising path toward prevention. Pancreatic cancer is expected to become [...]
Breakthrough Drug Restores Vision: Researchers Successfully Reverse Retinal Damage
Blocking the PROX1 protein allowed KAIST researchers to regenerate damaged retinas and restore vision in mice. Vision is one of the most important human senses, yet more than 300 million people around the world are at [...]
Differentiating cancerous and healthy cells through motion analysis
Researchers from Tokyo Metropolitan University have found that the motion of unlabeled cells can be used to tell whether they are cancerous or healthy. They observed malignant fibrosarcoma [...]