The device uses lasers to accelerate electrons along an etched channel.
In a full-scale particle accelerator, electrons fly along a kilometers-long path as microwaves bombard them, boosting the particles to near light speed. Such a high-energy electron beam, produced at facilities such as California’s SLAC National Accelerator Laboratory, enables a variety of experiments, including capturing extremely detailed images and probing the structures of molecules. But particle accelerators are expensive, require scientists to travel from locations all over the world and cannot accommodate all the researchers who submit requests to book time. To make these devices more accessible, a team at Stanford University developed a laser-driven particle accelerator that fits on a tiny silicon chip—and that could eventually be scaled up to produce a beam with as much energy as SLAC’s.
“The idea of using lasers in accelerators goes all the way back to the year the laser was invented, 1960,” says Robert Byer, a Stanford researcher who has been working on this concept since 1974. Lasers produce electromagnetic waves with much shorter wavelengths than the microwaves used in a full-scale accelerator, which means they can accelerate electrons moving through a much smaller space. “The size of these devices is uncannily small,” Byer says. The electrons in the new accelerator, for example, travel along a channel that is about three one-thousandths of a millimeter wide—around half the width of a human red blood cell.
Although laser-driven devices can accelerate electrons in a much smaller space than full-scale accelerators, they also require much greater precision to line up the laser and the electrons in the right way, so the light waves push the particles in the correct direction with as much energy as possible. “You not only have to demonstrate the ability to couple the laser light to the electrons in these very small structures, but you have to generate the electrons and have them also be transmitted by the channel,” Byer explains. In 2013 two research groups, one at Stanford and other U.S. institutions and another in Germany, independently managed to accelerate electrons with lasers. But these proof-of-concept prototypes required separate devices to generate the electrons, and they would be difficult to manufacture in bulk using existing techniques.
Image Credit: Neil Sapra

News This Week
3D Eye Scans Emerge as a Crucial Tool in Combating Kidney Disease
A new study indicates that 3D retinal scans could revolutionize the early detection and monitoring of kidney disease, offering a non-invasive and efficient diagnostic tool. 3D eye scans can reveal vital clues about kidney [...]
Researchers develop a blood test to identify individuals at risk of developing Parkinson’s disease
Research carried out at Oxford's Nuffield Department of Clinical Neurosciences has led to the development of a new blood-based test to identify the pathology that triggers Parkinson's disease before the main symptoms occur. This [...]
“Challenging the Paradigm” – Scientists Develop New Approach To Stop Cancer Growth
Biochemists at Case Western Reserve are concentrating on the degradation of a key protein that drives cancer; represents a major shift in research. Biochemical researchers at Case Western Reserve University have discovered a a new function [...]
Researcher develops a chatbot with an expertise in nanomaterials
A researcher has just finished writing a scientific paper. She knows her work could benefit from another perspective. Did she overlook something? Or perhaps there's an application of her research she hadn't thought of. [...]
Research shows human behavior guided by fast changes in dopamine levels
What happens in the human brain when we learn from positive and negative experiences? To help answer that question and better understand decision-making and human behavior, scientists are studying dopamine. Dopamine is a neurotransmitter [...]
Tiny robots made from human cells heal damaged tissue
The ‘anthrobots’ were able to repair a scratch in a layer of neurons in the lab. Scientists have developed tiny robots made of human cells that are able to repair damaged neural tissue1. The [...]
Antimicrobial Resistance – A Global Concern
Key facts Antimicrobial resistance (AMR) is one of the top global public health and development threats. It is estimated that bacterial AMR was directly responsible for 1.27 million global deaths in 2019 and contributed to [...]
Advancing Pancreatic Cancer Treatment with Nanoparticle-Based Chemotherapy
Pancreatic cancer, a particularly lethal form of cancer and the fourth leading cause of cancer-related deaths in the western world, often remains undiagnosed until its advanced stages due to a lack of early symptoms. [...]
The ‘jigglings and wigglings of atoms’ reveal key aspects of COVID-19 virulence evolution
Richard Feynman famously stated, "Everything that living things do can be understood in terms of the jigglings and wigglings of atoms." This week, Nature Nanotechnology features a study that sheds new light on the evolution of the coronavirus [...]
AI system self-organizes to develop features of brains of complex organisms
Cambridge scientists have shown that placing physical constraints on an artificially-intelligent system—in much the same way that the human brain has to develop and operate within physical and biological constraints—allows it to develop features [...]
How Blind People Recognize Faces via Sound
Summary: A new study reveals that people who are blind can recognize faces using auditory patterns processed by the fusiform face area, a brain region crucial for face processing in sighted individuals. The study employed [...]
Treating tumors with engineered dendritic cells
Cancer biologists at EPFL, UNIGE, and the German Cancer Research Center (Heidelberg) have developed a novel immunotherapy that does not require knowledge of a tumor's antigenic makeup. The new results may pave the way [...]
Networking nano-biosensors for wireless communication in the blood
Biological computing machines, such as micro and nano-implants that can collect important information inside the human body, are transforming medicine. Yet, networking them for communication has proven challenging. Now, a global team, including EPFL [...]
Popular Hospital Disinfectant Ineffective Against Common Superbug
Research conducted during World Antimicrobial Awareness Week examines the effects of employing suggested chlorine-based chemicals to combat Clostridioides difficile, the leading cause of antibiotic-related illness in healthcare environments worldwide. A recent study reveals that a [...]
Subjectivity and the Evolution of AI Philosophy
An Historical Overview of the Philosophy of Artificial Intelligence by Anton Vokrug Many famous people in the philosophy of technology have tried to comprehend the essence of technology and link it to society and human [...]
How Lockdowns Shaped the Virus: AI Uncovers COVID-19’s Evolutionary Secrets
A new research study shows that human behavior, like lockdowns, influences the evolution of COVID-19, leading to strains that are more transmissible earlier in their lifecycle. Using artificial intelligence technology and mathematical modeling, a research [...]