| Mimicking the human body, specifically the actuators that control muscle movement, is of immense interest around the globe. In recent years, it has led to many innovations to improve robotics, prosthetic limbs and more, but creating these actuators typically involves complex processes, with expensive and hard-to-find materials. | |
| Researchers at The University of Texas at Austin and Penn State University have created a new type of fiber that can perform like a muscle actuator, in many ways better than other options that exist today. And, most importantly, these muscle-like fibers are simple to make and recycle. | |
| In a new paper published in Nature Nanotechnology (“Nanostructured block copolymer muscles”), the researchers showed that these fibers, which they initially discovered while working on another project, are more efficient, flexible and able to handle increased strain compared to what’s out there today. These fibers could be used in a variety of ways, including medicine and robotics. |
| “You can basically build a limb from these fibers in a robot that responds to stimuli and returns power, instead of using a mechanical motor to do this, and that’s good because then it will have a softer touch,” said Manish Kumar, an associate professor in the Cockrell School of Engineering’s Department of Civil, Architectural and Environmental Engineering and one of the lead authors of the paper. | |
| This kind of robotic arm could be used in an assistive exoskeleton to help people with weak arms regain movement and strength. Another potential application, the researchers say, could be a sort of “self-closing bandage” that could be used in surgical procedures and naturally degrade inside the body once the wound heals. | |
| “Actuators are any material that will change or deform under any external stimuli, like parts of a machine that will contract, bend, or expand,” said Robert Hickey, assistant professor of materials science and engineering at Penn State and corresponding author on the paper. “And for technologies like robotics, we need to develop soft, lightweight versions of these materials that can basically act as artificial muscles. Our work is really about finding a new way to do this.” | |
| The fiber material is known as a block co-polymer. Creating it only requires putting the polymer in a solvent and then adding water. One part of the polymer is hydrophilic (attracted to water), while the other part is hydrophobic (resistant to water). The hydrophobic parts of the polymer group together to shield themselves from the water, creating the structure of the fiber. | |
| Similar existing fibers require an electric current to stimulate the reactions that bond parts together. This chemical cross-linking is harder to make happen, compared to the researchers’ new fiber, which is a mechanical reaction, meaning the parts take care of most of the work themselves. Another added bonus is it is simple to reverse the process and return the pieces of the fiber to their original states. | |
| “The ease of making these fibers from the polymer and their recyclability are very important, and it’s an aspect that much of the other complicated artificial muscle research doesn’t cover,” Kumar said. | |
| The researchers found their fibers were 75% more efficient in terms of converting energy to movement, able to handle 80% more strain and could rotate with more speed and force than current actuators. And it can stretch to more than 900% of its length before it breaks. | |
| The discovery came while the researchers were working on something else. They were trying to use these polymers to make membranes for water filtration. However, the structures they made were too long for membranes. They stretched out to five times their original length and held that length. The researchers noticed that these characteristics were similar to muscle tissue, so they decided to shift the focus. | |
| The researchers are early on in the project, and they next plan to learn more about the structural changes of the polymer and improve some of the actuation properties, including energy density and speed. They also may use this same design technique to create actuators that respond to different stimuli, such as light. |
News
New book from NanoappsMedical Inc – Molecular Manufacturing: The Future of Nanomedicine
This book explores the revolutionary potential of atomically precise manufacturing technologies to transform global healthcare, as well as practically every other sector across society. This forward-thinking volume examines how envisaged Factory@Home systems might enable the cost-effective [...]
A Virus Designed in the Lab Could Help Defeat Antibiotic Resistance
Scientists can now design bacteria-killing viruses from DNA, opening a faster path to fighting superbugs. Bacteriophages have been used as treatments for bacterial infections for more than a century. Interest in these viruses is rising [...]
Sleep Deprivation Triggers a Strange Brain Cleanup
When you don’t sleep enough, your brain may clean itself at the exact moment you need it to think. Most people recognize the sensation. After a night of inadequate sleep, staying focused becomes harder [...]
Lab-grown corticospinal neurons offer new models for ALS and spinal injuries
Researchers have developed a way to grow a highly specialized subset of brain nerve cells that are involved in motor neuron disease and damaged in spinal injuries. Their study, published today in eLife as the final [...]
Urgent warning over deadly ‘brain swelling’ virus amid fears it could spread globally
Airports across Asia have been put on high alert after India confirmed two cases of the deadly Nipah virus in the state of West Bengal over the past month. Thailand, Nepal and Vietnam are among the [...]
This Vaccine Stops Bird Flu Before It Reaches the Lungs
A new nasal spray vaccine could stop bird flu at the door — blocking infection, reducing spread, and helping head off the next pandemic. Since first appearing in the United States in 2014, H5N1 [...]
These two viruses may become the next public health threats, scientists say
Two emerging pathogens with animal origins—influenza D virus and canine coronavirus—have so far been quietly flying under the radar, but researchers warn conditions are ripe for the viruses to spread more widely among humans. [...]
COVID-19 viral fragments shown to target and kill specific immune cells
COVID-19 viral fragments shown to target and kill specific immune cells in UCLA-led study Clues about extreme cases and omicron’s effects come from a cross-disciplinary international research team New research shows that after the [...]
Smaller Than a Grain of Salt: Engineers Create the World’s Tiniest Wireless Brain Implant
A salt-grain-sized neural implant can record and transmit brain activity wirelessly for extended periods. Researchers at Cornell University, working with collaborators, have created an extremely small neural implant that can sit on a grain of [...]
Scientists Develop a New Way To See Inside the Human Body Using 3D Color Imaging
A newly developed imaging method blends ultrasound and photoacoustics to capture both tissue structure and blood-vessel function in 3D. By blending two powerful imaging methods, researchers from Caltech and USC have developed a new way to [...]
Brain waves could help paralyzed patients move again
People with spinal cord injuries often lose the ability to move their arms or legs. In many cases, the nerves in the limbs remain healthy, and the brain continues to function normally. The loss of [...]
Scientists Discover a New “Cleanup Hub” Inside the Human Brain
A newly identified lymphatic drainage pathway along the middle meningeal artery reveals how the human brain clears waste. How does the brain clear away waste? This task is handled by the brain’s lymphatic drainage [...]
New Drug Slashes Dangerous Blood Fats by Nearly 40% in First Human Trial
Scientists have found a way to fine-tune a central fat-control pathway in the liver, reducing harmful blood triglycerides while preserving beneficial cholesterol functions. When we eat, the body turns surplus calories into molecules called [...]
A Simple Brain Scan May Help Restore Movement After Paralysis
A brain cap and smart algorithms may one day help paralyzed patients turn thought into movement—no surgery required. People with spinal cord injuries often experience partial or complete loss of movement in their arms [...]
Plant Discovery Could Transform How Medicines Are Made
Scientists have uncovered an unexpected way plants make powerful chemicals, revealing hidden biological connections that could transform how medicines are discovered and produced. Plants produce protective chemicals called alkaloids as part of their natural [...]
Scientists Develop IV Therapy That Repairs the Brain After Stroke
New nanomaterial passes the blood-brain barrier to reduce damaging inflammation after the most common form of stroke. When someone experiences a stroke, doctors must quickly restore blood flow to the brain to prevent death. [...]















