Light can behave in very unexpected ways when you squeeze it into small spaces. In a paper in the journal Science, Mark Brongersma, a professor of materials science and engineering at Stanford University, and doctoral candidate Skyler Selvin describe the novel way they have used sound to manipulate light that has been confined to gaps only a few nanometers across—allowing the researchers exquisite control over the color and intensity of light mechanically.
The findings could have broad implications in fields ranging from computer and virtual reality displays to 3D holographic imagery, optical communications, and even new ultrafast, light-based neural networks.
The new device is not the first to manipulate light with sound, but it is smaller and potentially more practical and powerful than conventional methods. From an engineering standpoint, acoustic waves are attractive because they can vibrate very fast, billions of times per second.
Unfortunately, the atomic displacements produced by acoustic waves are extremely small—about 1,000 times smaller than the wavelength of light. Thus, acousto‑optical devices have had to be larger and thicker to amplify sound’s tiny effect—too big for today’s nanoscale world.
“In optics, big equals slow,” Brongersma said. “So, this device’s small scale makes it very fast.”
Simplicity from the start
The new device is deceptively simple. A thin gold mirror is coated with an ultrathin layer of a rubbery silicone‑based polymer only a few nanometers thick. The research team could fabricate the silicone layer to desired thicknesses—anywhere between 2 and 10 nanometers. For comparison, the wavelength of light is almost 500 nanometers tip to tail.
The researchers then deposit an array of 100‑nanometer gold nanoparticles across the silicone. The nanoparticles float like golden beach balls on an ocean of polymer atop a mirrored sea floor. Light is gathered by the nanoparticles and mirror and focused onto the silicone between—shrinking the light to the nanoscale.
To the side, they attach a special kind of ultrasound speaker—an interdigitated transducer, IDT—that sends high‑frequency sound waves rippling across the film at nearly a billion times a second. The high‑frequency sound waves (surface acoustic waves, SAWs) surf along the surface of the gold mirror beneath the nanoparticles. The elastic polymer acts like a spring, stretching and compressing as the nanoparticles bob up and down as the sound waves course by.
The researchers then shine light into the system. The light gets squeezed into the oscillating gaps between the gold nanoparticles and the gold film. The gaps change in size by the mere width of a few atoms, but it is enough to produce an outsized effect on the light.
The size of the gaps determines the color of the light resonating from each nanoparticle. The researchers can control the gaps by modulating the acoustic wave and therefore control the color and intensity of each particle.
“In this narrow gap, the light is squeezed so tightly that even the smallest movement significantly affects it,” Selvin said. “We are controlling the light with lengths on the nanometer scale, where typically millimeters have been required to modulate light acoustically.”
Starry, starry sky
When white light is shined from the side and the sound wave is turned on, the result is a series of flickering, multicolored nanoparticles against a black background, like stars twinkling in the night sky. Any light that does not strike a nanoparticle is bounced out of the field of view by the mirror, and only the light that is scattered by the particles is directed outward toward the human eye. Thus, the gold mirror appears black and each gold nanoparticle shines like a star.
The degree of optical modulation caught the researchers off guard. “I was rolling on the floor laughing,” Brongersma said of his reaction when Selvin showed him the results of his first experiments.
“I thought it would be a very subtle effect, but I was amazed at how many nanometer changes in distance can change the light scattering properties so dramatically.”
The exceptional tunability, small form factor, and efficiency of the new device could transform any number of commercial fields. One can imagine ultrathin video displays, ultra‑fast optical communications based on acousto‑optics’ high‑frequency capabilities, or perhaps new holographic virtual reality headsets that are much smaller than the bulky displays of today, among other applications.
“When we can control the light so effectively and dynamically,” Brongersma said, “we can do everything with light that we could want—holography, beam steering, 3D displays—anything.”
More information: Skyler Peitso Selvin et al, Acoustic wave modulation of gap plasmon cavities, Science (2025). DOI: 10.1126/science.adv1728. www.science.org/doi/10.1126/science.adv1728
Journal information: Science
Provided by Stanford University

News
Nanodevice uses sound to sculpt light, paving the way for better displays and imaging
Light can behave in very unexpected ways when you squeeze it into small spaces. In a paper in the journal Science, Mark Brongersma, a professor of materials science [...]
ChatGPT helps speed up patient screening for clinical trials
A new study in the academic journal Machine Learning: Health discovers that ChatGPT can accelerate patient screening for clinical trials, showing promise in reducing delays and improving trial success rates. Researchers at UT Southwestern Medical Centre used [...]
New Study Reveals This Popular Fruit Is Actually a “Superfood”
A new peer-reviewed article argues that grapes deserve a place among today’s top superfoods. A recent article published in the peer-reviewed Journal of Agriculture and Food Chemistry takes a closer look at the term [...]
Experimental Drug Reverses PTSD Symptoms in Mice – Already in Human Trials
Excessive levels of GABA released by astrocytes impair the brain’s ability to extinguish fear responses in PTSD, but a newly identified drug target offers promising hope for treatment. Many people with post-traumatic stress disorder (PTSD) [...]
New high-selectivity nanozyme enables rapid and visible disease diagnostics
To enable early diagnosis of acute illnesses and effective management of chronic conditions, point-of-care testing (POCT) technology—diagnostics conducted near the patient—is drawing global attention. The key to POCT lies in enzymes that recognize and [...]
Globally, over 2.5 million COVID deaths prevented worldwide thanks to vaccines
Thanks to vaccinations against SARS-CoV-2 in the period 2020–2024, 2.533 million deaths were prevented at the global level; one death was avoided for every 5,400 doses of vaccine administered. Some 82% of the lives [...]
RNA-seq outperforms DNA methods in detecting actionable cancer mutations
Hospital for Sick Children in Toronto researchers are reporting that targeted RNA sequencing can detect clinically actionable alterations in 87% of tumors and provide decisive findings where DNA-seq either fails, returns no variant, or [...]
Physicists discover new state of quantum matter
Researchers at the University of California, Irvine have discovered a new state of quantum matter. The state exists within a material that the team reports could lead to a new era of self-charging computers [...]
Researchers create safer nonstick surface, cutting use of ‘forever chemicals’
A new material developed by researchers from University of Toronto Engineering could offer a safer alternative to the nonstick chemicals commonly used in cookware and other applications. The new substance repels both water and [...]
New research identifies critical gene for treatment
Amyotrophic lateral sclerosis (ALS) - which you may know as the disease that affected Stephen Hawking - is a fatal neurodegenerative disease that causes progressive muscle weakness. A research team at Tohoku University and [...]
DNA Nanoflower Targets Breast Cancer Cells in Drug Delivery Breakthrough
Scientists have developed a DNA nanoflower that delivers chemotherapy and gene therapy directly to breast cancer cells, boosting effectiveness while reducing side effects in early tests. Breast cancer continues to be one of the most [...]
New method genetically blocks mosquitoes from transmitting malaria
Mosquitoes kill more people each year than any other animal. In 2023, the blood-sucking insects infected a reported 263 million people with malaria, leading to nearly 600,000 deaths, 80% of which were children. Recent [...]
How Covid led to an ‘acceleration’ in brain ageing (even if you didn’t have the virus)
The Covid pandemic 'significantly' accelerated brain ageing – even among those who were never infected, a study suggests. Scientists say the strain on people's lives, from isolation for weeks on end to the uncertainty surrounding [...]
Novel Sonication Method Creates Realistic Nanoplastics for Pollution Research
Scientists have developed a simple sonication method to create nanoplastics that closely mimic environmental particles, promising more realistic studies of their ecological impact. Plastics like polyethylene, PET, and polystyrene are used worldwide. Through wear [...]
Pfizer’s COVID-19 Vaccine May Lead to Serious Eye Damage, New Study Reveals
A new Turkish study has raised concerns that Pfizer-BioNTech's COVID-19 vaccine may have subtle but serious side effects on the cornea. The research examined changes in the corneas of at least 64 patients before [...]
Old chemistry unlocks safer and stronger mRNA delivery
As millions of people know firsthand, the most common side effect of mRNA vaccines like the COVID-19 shot is inflammation: soreness, redness and a day or two of malaise. But what if mRNA vaccines [...]