Light can behave in very unexpected ways when you squeeze it into small spaces. In a paper in the journal Science, Mark Brongersma, a professor of materials science and engineering at Stanford University, and doctoral candidate Skyler Selvin describe the novel way they have used sound to manipulate light that has been confined to gaps only a few nanometers across—allowing the researchers exquisite control over the color and intensity of light mechanically.
The findings could have broad implications in fields ranging from computer and virtual reality displays to 3D holographic imagery, optical communications, and even new ultrafast, light-based neural networks.
The new device is not the first to manipulate light with sound, but it is smaller and potentially more practical and powerful than conventional methods. From an engineering standpoint, acoustic waves are attractive because they can vibrate very fast, billions of times per second.
Unfortunately, the atomic displacements produced by acoustic waves are extremely small—about 1,000 times smaller than the wavelength of light. Thus, acousto‑optical devices have had to be larger and thicker to amplify sound’s tiny effect—too big for today’s nanoscale world.
“In optics, big equals slow,” Brongersma said. “So, this device’s small scale makes it very fast.”
Simplicity from the start
The new device is deceptively simple. A thin gold mirror is coated with an ultrathin layer of a rubbery silicone‑based polymer only a few nanometers thick. The research team could fabricate the silicone layer to desired thicknesses—anywhere between 2 and 10 nanometers. For comparison, the wavelength of light is almost 500 nanometers tip to tail.
The researchers then deposit an array of 100‑nanometer gold nanoparticles across the silicone. The nanoparticles float like golden beach balls on an ocean of polymer atop a mirrored sea floor. Light is gathered by the nanoparticles and mirror and focused onto the silicone between—shrinking the light to the nanoscale.
To the side, they attach a special kind of ultrasound speaker—an interdigitated transducer, IDT—that sends high‑frequency sound waves rippling across the film at nearly a billion times a second. The high‑frequency sound waves (surface acoustic waves, SAWs) surf along the surface of the gold mirror beneath the nanoparticles. The elastic polymer acts like a spring, stretching and compressing as the nanoparticles bob up and down as the sound waves course by.
The researchers then shine light into the system. The light gets squeezed into the oscillating gaps between the gold nanoparticles and the gold film. The gaps change in size by the mere width of a few atoms, but it is enough to produce an outsized effect on the light.
The size of the gaps determines the color of the light resonating from each nanoparticle. The researchers can control the gaps by modulating the acoustic wave and therefore control the color and intensity of each particle.
“In this narrow gap, the light is squeezed so tightly that even the smallest movement significantly affects it,” Selvin said. “We are controlling the light with lengths on the nanometer scale, where typically millimeters have been required to modulate light acoustically.”
Starry, starry sky
When white light is shined from the side and the sound wave is turned on, the result is a series of flickering, multicolored nanoparticles against a black background, like stars twinkling in the night sky. Any light that does not strike a nanoparticle is bounced out of the field of view by the mirror, and only the light that is scattered by the particles is directed outward toward the human eye. Thus, the gold mirror appears black and each gold nanoparticle shines like a star.
The degree of optical modulation caught the researchers off guard. “I was rolling on the floor laughing,” Brongersma said of his reaction when Selvin showed him the results of his first experiments.
“I thought it would be a very subtle effect, but I was amazed at how many nanometer changes in distance can change the light scattering properties so dramatically.”
The exceptional tunability, small form factor, and efficiency of the new device could transform any number of commercial fields. One can imagine ultrathin video displays, ultra‑fast optical communications based on acousto‑optics’ high‑frequency capabilities, or perhaps new holographic virtual reality headsets that are much smaller than the bulky displays of today, among other applications.
“When we can control the light so effectively and dynamically,” Brongersma said, “we can do everything with light that we could want—holography, beam steering, 3D displays—anything.”
More information: Skyler Peitso Selvin et al, Acoustic wave modulation of gap plasmon cavities, Science (2025). DOI: 10.1126/science.adv1728. www.science.org/doi/10.1126/science.adv1728
Journal information: Science
Provided by Stanford University
News
New nanomedicine wipes out leukemia in animal study
In a promising advance for cancer treatment, Northwestern University scientists have re-engineered the molecular structure of a common chemotherapy drug, making it dramatically more soluble and effective and less toxic. In the new study, [...]
Mystery Solved: Scientists Find Cause for Unexplained, Deadly Diseases
A study reveals that a protein called RPA is essential for maintaining chromosome stability by stimulating telomerase. New findings from the University of Wisconsin-Madison suggest that problems with a key protein that helps preserve chromosome stability [...]
Nanotech Blocks Infection and Speed Up Chronic Wound Recovery
A new nanotech-based formulation using quercetin and omega-3 fatty acids shows promise in halting bacterial biofilms and boosting skin cell repair. Scientists have developed a nanotechnology-based treatment to fight bacterial biofilms in wound infections. The [...]
Researchers propose five key questions for effective adoption of AI in clinical practice
While Artificial Intelligence (AI) can be a powerful tool that physicians can use to help diagnose their patients and has great potential to improve accuracy, efficiency and patient safety, it has its drawbacks. It [...]
Advancements and clinical translation of intelligent nanodrugs for breast cancer treatment
A comprehensive review in "Biofunct. Mater." meticulously details the most recent advancements and clinical translation of intelligent nanodrugs for breast cancer treatment. This paper presents an exhaustive overview of subtype-specific nanostrategies, the clinical benefits [...]
It’s Not “All in Your Head”: Scientists Develop Revolutionary Blood Test for Chronic Fatigue Syndrome
A 96% accurate blood test for ME/CFS could transform diagnosis and pave the way for future long COVID detection. Researchers from the University of East Anglia and Oxford Biodynamics have created a highly accurate [...]
How Far Can the Body Go? Scientists Find the Ultimate Limit of Human Endurance
Even the most elite endurance athletes can’t outrun biology. A new study finds that humans hit a metabolic ceiling at about 2.5 times their resting energy burn. When ultra-runners take on races that last [...]
World’s Rivers “Overdosing” on Human Antibiotics, Study Finds
Researchers estimate that approximately 8,500 tons of antibiotics enter river systems each year after passing through the human body and wastewater treatment processes. Rivers spanning millions of kilometers across the globe are contaminated with [...]
Yale Scientists Solve a Century-Old Brain Wave Mystery
Yale scientists traced gamma brain waves to thalamus-cortex interactions. The discovery could reveal how brain rhythms shape perception and disease. For more than a century, scientists have observed rhythmic waves of synchronized neuronal activity [...]
Can introducing peanuts early prevent allergies? Real-world data confirms it helps
New evidence from a large U.S. primary care network shows that early peanut introduction, endorsed in 2015 and 2017 guidelines, was followed by a marked decline in clinician-diagnosed peanut and overall food allergies among [...]
Nanoparticle blueprints reveal path to smarter medicines
Lipid nanoparticles (LNPs) are the delivery vehicles of modern medicine, carrying cancer drugs, gene therapies and vaccines into cells. Until recently, many scientists assumed that all LNPs followed more or less the same blueprint, [...]
How nanomedicine and AI are teaming up to tackle neurodegenerative diseases
When I first realized the scale of the challenge posed by neurodegenerative diseases, such as Alzheimer's, Parkinson's disease and amyotrophic lateral sclerosis (ALS), I felt simultaneously humbled and motivated. These disorders are not caused [...]
Self-Organizing Light Could Transform Computing and Communications
USC engineers have demonstrated a new kind of optical device that lets light organize its own route using the principles of thermodynamics. Instead of relying on switches or digital control, the light finds its own [...]
Groundbreaking New Way of Measuring Blood Pressure Could Save Thousands of Lives
A new method that improves the accuracy of interpreting blood pressure measurements taken at the ankle could be vital for individuals who are unable to have their blood pressure measured on the arm. A newly developed [...]
Scientist tackles key roadblock for AI in drug discovery
The drug development pipeline is a costly and lengthy process. Identifying high-quality "hit" compounds—those with high potency, selectivity, and favorable metabolic properties—at the earliest stages is important for reducing cost and accelerating the path [...]
Nanoplastics with environmental coatings can sneak past the skin’s defenses
Plastic is ubiquitous in the modern world, and it's notorious for taking a long time to completely break down in the environment - if it ever does. But even without breaking down completely, plastic [...]
									














