| Researchers from the University of Sydney Nano Institute and School of Chemistry have revealed that tiny gas bubbles – nanobubbles just 100 billionths of a metre high – form on surfaces in unexpected situations, providing a new way to reduce drag in small-scale devices. | |
| Liquid drag within microdevices can lead to internal fouling (accumulation of unwanted biological materials) or damage biological samples such as cells, due to high pressure. So, the discovery could pave the way to the development of better medical diagnostic tools, such as lab-on-a-chip devices that undertake DNA analysis or are used for biomedical detection of disease pathogens. | |
| The team, led by Professor Chiara Neto, developed nanoengineered wrinkled coatings that reduce drag by up to 38 percent compared with nominally ‘smooth’ solid surfaces. The slippery coatings, once infused with a lubricant, are also highly resistant to biofouling. | |
| Using atomic-force microscopy – a very high-resolution scanning microscope – the team discovered that the fluids passing through micro-structured channels with these surfaces were able to slip through with lower friction due to the spontaneous formation of nanobubbles, a phenomenon never before described. | |
| The results are published in Nature Communications (“Nanobubbles explain the large slip observed on lubricant-infused surfaces”). | |
Potential medical application |
|
| Many medical diagnostic tools rely on the small-scale analysis of tiny amounts of biological and other materials in liquid form. These ‘microfluidic devices’ use microchannels and microreactors in which reactions usually done on a large scale in a chemistry or pathology lab are conducted at a miniaturised scale. | |
| Analysing much smaller volumes of material enables faster and more efficient diagnostics. However, the problem with microfluidic devices is that the fluid flow is dramatically slowed down by the friction of the liquid with the solid walls of the channels, creating a large hydrodynamic drag. To overcome this, the devices apply high pressures to drive the flow. | |
| In turn, the high pressure inside these devices is not only inefficient but can also damage delicate samples in the device, such as cells and other soft materials. Further, the solid walls easily become fouled by biological molecules or bacteria, leading to fast degradation through biofouling. | |
| A solution to both these problems is by using surfaces in which nanoscale pores trap small amounts of a lubricant, forming a slippery liquid interface, which reduces hydrodynamic drag and prevents surface biofouling. | |
| In effect, liquid-infused surfaces replace the solid wall with a liquid wall, allowing the flow of a second liquid with lower friction, requiring lower pressure. However, the mechanism by which these liquid-infused surfaces work has not been understood, as the reduction of friction that these surfaces offer has been reported to be 50 times larger than would be expected based on theory. | |
Nanobubbles to the rescue? |
|
| Professor Neto and her team have described how they formed liquid-infused walls on their microfluidic devices, by developing nanoengineered wrinkled coatings that reduce drag by up to 38 percent compared to solid walls. The team includes: PhD student Chris Vega-Sánchez, whose work over the past three years focused on microfluidics; Dr Sam Peppou-Chapman, an expert in liquid-infused surfaces; and Dr Liwen Zhu, an expert in atomic force microscopy, which gives scientists the ability to see down to a billionth of a metre. | |
| Conducting microfluidic measurements, the team revealed that the new slippery surfaces reduced drag relative to solid surfaces to a degree that would be expected only if the surface was infused with air rather than a viscous lubricant. Not satisfied with the successful drag reduction, the team worked to demonstrate the mechanism by which the surfaces induced slip. | |
| They did this by scanning the surfaces underwater using atomic-force microscopy, enabling them to image the spontaneous formation of nanobubbles, only 100 nanometres high on the surface. Their presence quantitatively explains the huge slip observed in microfluidic flow. | |
| Part of the microscopy work was done using the facilities of the Australian Centre for Microscopy & Microanalysis at the University of Sydney. | |
| Professor Neto said: “We want to understand the fundamental mechanism by which these surfaces work and to push the boundaries of their application, especially for energy efficiency. Now that we know why these surfaces are slippery and drag-reducing, we can design them specifically to minimise the energy required to drive flow in confined geometries and reduce fouling.” |
News
Researchers highlight five pathways through which microplastics can harm the brain
Microplastics could be fueling neurodegenerative diseases like Alzheimer's and Parkinson's, with a new study highlighting five ways microplastics can trigger inflammation and damage in the brain. More than 57 million people live with dementia, [...]
Tiny Metal Nanodots Obliterate Cancer Cells While Largely Sparing Healthy Tissue
Scientists have developed tiny metal-oxide particles that push cancer cells past their stress limits while sparing healthy tissue. An international team led by RMIT University has developed tiny particles called nanodots, crafted from a metallic compound, [...]
Gold Nanoclusters Could Supercharge Quantum Computers
Researchers found that gold “super atoms” can behave like the atoms in top-tier quantum systems—only far easier to scale. These tiny clusters can be customized at the molecular level, offering a powerful, tunable foundation [...]
A single shot of HPV vaccine may be enough to fight cervical cancer, study finds
WASHINGTON -- A single HPV vaccination appears just as effective as two doses at preventing the viral infection that causes cervical cancer, researchers reported Wednesday. HPV, or human papillomavirus, is very common and spread [...]
New technique overcomes technological barrier in 3D brain imaging
Scientists at the Swiss Light Source SLS have succeeded in mapping a piece of brain tissue in 3D at unprecedented resolution using X-rays, non-destructively. The breakthrough overcomes a long-standing technological barrier that had limited [...]
Scientists Uncover Hidden Blood Pattern in Long COVID
Researchers found persistent microclot and NET structures in Long COVID blood that may explain long-lasting symptoms. Researchers examining Long COVID have identified a structural connection between circulating microclots and neutrophil extracellular traps (NETs). The [...]
This Cellular Trick Helps Cancer Spread, but Could Also Stop It
Groups of normal cbiells can sense far into their surroundings, helping explain cancer cell migration. Understanding this ability could lead to new ways to limit tumor spread. The tale of the princess and the [...]
New mRNA therapy targets drug-resistant pneumonia
Bacteria that multiply on surfaces are a major headache in health care when they gain a foothold on, for example, implants or in catheters. Researchers at Chalmers University of Technology in Sweden have found [...]
Current Heart Health Guidelines Are Failing To Catch a Deadly Genetic Killer
New research reveals that standard screening misses most people with a common inherited cholesterol disorder. A Mayo Clinic study reports that current genetic screening guidelines overlook most people who have familial hypercholesterolemia, an inherited disorder that [...]
Scientists Identify the Evolutionary “Purpose” of Consciousness
Summary: Researchers at Ruhr University Bochum explore why consciousness evolved and why different species developed it in distinct ways. By comparing humans with birds, they show that complex awareness may arise through different neural architectures yet [...]
Novel mRNA therapy curbs antibiotic-resistant infections in preclinical lung models
Researchers at the Icahn School of Medicine at Mount Sinai and collaborators have reported early success with a novel mRNA-based therapy designed to combat antibiotic-resistant bacteria. The findings, published in Nature Biotechnology, show that in [...]
New skin-permeable polymer delivers insulin without needles
A breakthrough zwitterionic polymer slips through the skin’s toughest barriers, carrying insulin deep into tissue and normalizing blood sugar, offering patients a painless alternative to daily injections. A recent study published in the journal Nature examines [...]
Multifunctional Nanogels: A Breakthrough in Antibacterial Strategies
Antibiotic resistance is a growing concern - from human health to crop survival. A new study successfully uses nanogels to target and almost entirely inhibit the bacteria P. Aeruginosa. Recently published in Angewandte Chemie, the study [...]
Nanoflowers rejuvenate old and damaged human cells by replacing their mitochondria
Biomedical researchers at Texas A&M University may have discovered a way to stop or even reverse the decline of cellular energy production—a finding that could have revolutionary effects across medicine. Dr. Akhilesh K. Gaharwar [...]
The Stunning New Push to Protect the Invisible 99% of Life
Scientists worldwide have joined forces to build the first-ever roadmap for conserving Earth’s vast invisible majority—microbes. Their new IUCN Specialist Group reframes conservation by elevating microbial life to the same urgency as plants and [...]
Scientists Find a Way to Help the Brain Clear Alzheimer’s Plaques Naturally
Scientists have discovered that the brain may have a built-in way to fight Alzheimer’s. By activating a protein called Sox9, researchers were able to switch on star-shaped brain cells known as astrocytes and turn them into [...]















