Researchers have developed an ultra-thin and ultra-flexible electronic material that could be printed and rolled out like newspaper, for the touchscreens of the future.
The touch-responsive technology is 100 times thinner than existing touchscreen materials and so pliable it can be rolled up like a tube.
To create the new conductive sheet, an RMIT University-led team used a thin film common in cell phone touchscreens and shrunk it from 3D to 2D, using liquid metal chemistry.
The nano-thin sheets are readily compatible with existing electronic technologies and because of their incredible flexibility, could potentially be manufactured through roll-to-roll (R2R) processing just like a newspaper.
The research, with collaborators from UNSW, Monash University and the ARC Centre of Excellence in Future Low-Energy Electronics Technologies (FLEET), is published in the journal Nature Electronics (“Flexible two-dimensional indium tin oxide fabricated using a liquid metal printing technique”).
Lead researcher Dr Torben Daeneke said most cell phone touchscreens were made of a transparent material, indium-tin oxide, that was very conductive but also very brittle.
“We’ve taken an old material and transformed it from the inside to create a new version that’s supremely thin and flexible,” said Daeneke, an Australian Research Council DECRA Fellow at RMIT.
“You can bend it, you can twist it, and you could make it far more cheaply and efficiently that the slow and expensive way that we currently manufacture touchscreens.
“Turning it two-dimensional also makes it more transparent, so it lets through more light.
“This means a cell phone with a touchscreen made of our material would use less power, extending the battery life by roughly 10%.”

Image Credit:  RMIT University

Read more at nanowerk.com

News This Week

NanoApps Athletics Inc. Established

Frank Boehm (NanoApps Medical Inc. founder) and Amanda Scott (NA CEO) join NanoApps Athletics Inc. NanoApps Athletics Inc proposes a unique synergistic biochemical/nanomedical strategy for the expedited repair and healing of Achilles tendon micro [...]

A megalibrary of nanoparticles

Using straightforward chemistry and a mix-and-match, modular strategy, researchers have developed a simple approach that could produce over 65,000 different types of complex nanoparticles, each containing up to six different materials and eight segments, [...]

Walking with atoms

Ever since it was proposed that atoms are building blocks of the world, scientists have been trying to understand how and why they bond to each other. Be it a molecule (which is a [...]