Generative AI, which is currently riding a crest of popular discourse, promises a world where the simple transforms into the complex — where a simple distribution evolves into intricate patterns of images, sounds, or text, rendering the artificial startlingly real.
The realms of imagination no longer remain as mere abstractions, as researchers from MIT’s Computer Science and Artificial Intelligence Laboratory (CSAIL) have brought an innovative AI model to life. Their new technology integrates two seemingly unrelated physical laws that underpin the best-performing generative models to date: diffusion, which typically illustrates the random motion of elements, like heat permeating a room or a gas expanding into space, and Poisson Flow, which draws on the principles governing the activity of electric charges.
A New Model Emerges
This harmonious blend has resulted in superior performance in generating new images, outpacing existing state-of-the-art models. Since its inception, the “Poisson Flow Generative Model ++” (PFGM++) has found potential applications in various fields, from antibody and RNA sequence generation to audio production and graph generation.
The model can generate complex patterns, like creating realistic images or mimicking real-world processes. PFGM++ builds off of PFGM, the team’s work from the prior year. PFGM takes inspiration from the means behind the mathematical equation known as the “Poisson” equation, and then applies it to the data the model tries to learn from. To do this, the team used a clever trick: They added an extra dimension to their model’s “space,” kind of like going from a 2D sketch to a 3D model. This extra dimension gives more room for maneuvering, places the data in a larger context, and helps one approach the data from all directions when generating new samples.
“PFGM++ is an example of the kinds of AI advances that can be driven through interdisciplinary collaborations between physicists and computer scientists,” says Jesse Thaler, theoretical particle physicist in MIT’s Laboratory for Nuclear Science’s Center for Theoretical Physics and director of the National Science Foundation’s AI Institute for Artificial Intelligence and Fundamental Interactions (NSF AI IAIFI), who was not involved in the work.
“In recent years, AI-based generative models have yielded numerous eye-popping results, from photorealistic images to lucid streams of text. Remarkably, some of the most powerful generative models are grounded in time-tested concepts from physics, such as symmetries and thermodynamics. PFGM++ takes a century-old idea from fundamental physics — that there might be extra dimensions of space-time — and turns it into a powerful and robust tool to generate synthetic but realistic datasets. I’m thrilled to see the myriad of ways ‘physics intelligence’ is transforming the field of artificial intelligence.”
Underlying Mechanics
The underlying mechanism of PFGM isn’t as complex as it might sound. The researchers compared the data points to tiny electric charges placed on a flat plane in a dimensionally expanded world. These charges produce an “electric field,” with the charges looking to move upwards along the field lines into an extra dimension and consequently forming a uniform distribution on a vast imaginary hemisphere. The generation process is like rewinding a videotape: starting with a uniformly distributed set of charges on the hemisphere and tracking their journey back to the flat plane along the electric lines, they align to match the original data distribution. This intriguing process allows the neural model to learn the electric field, and generate new data that mirrors the original.
The PFGM++ model extends the electric field in PFGM to an intricate, higher-dimensional framework. When you keep expanding these dimensions, something unexpected happens — the model starts resembling another important class of models, the diffusion models. This work is all about finding the right balance. The PFGM and diffusion models sit at opposite ends of a spectrum: one is robust but complex to handle, the other simpler but less sturdy. The PFGM++ model offers a sweet spot, striking a balance between robustness and ease of use. This innovation paves the way for more efficient image and pattern generation, marking a significant step forward in technology. Along with adjustable dimensions, the researchers proposed a new training method that enables more efficient learning of the electric field.
Putting Theory to the Test
To bring this theory to life, the team resolved a pair of differential equations detailing these charges’ motion within the electric field. They evaluated the performance using the Frechet Inception Distance (FID) score, a widely accepted metric that assesses the quality of images generated by the model in comparison to the real ones. PFGM++ further showcases a higher resistance to errors and robustness toward the step size in the differential equations.
Looking ahead, they aim to refine certain aspects of the model, particularly in systematic ways to identify the “sweet spot” value of D tailored for specific data, architectures, and tasks by analyzing the behavior of estimation errors of neural networks. They also plan to apply the PFGM++ to the modern large-scale text-to-image/text-to-video generation.
Industry Feedback
“Diffusion models have become a critical driving force behind the revolution in generative AI,” says Yang Song, research scientist at OpenAI. “PFGM++ presents a powerful generalization of diffusion models, allowing users to generate higher-quality images by improving the robustness of image generation against perturbations and learning errors. Furthermore, PFGM++ uncovers a surprising connection between electrostatics and diffusion models, providing new theoretical insights into diffusion model research.”
“Poisson Flow Generative Models do not only rely on an elegant physics-inspired formulation based on electrostatics, but they also offer state-of-the-art generative modeling performance in practice,” says NVIDIA Senior Research Scientist Karsten Kreis, who was not involved in the work.
“They even outperform the popular diffusion models, which currently dominate the literature. This makes them a very powerful generative modeling tool, and I envision their application in diverse areas, ranging from digital content creation to generative drug discovery. More generally, I believe that the exploration of further physics-inspired generative modeling frameworks holds great promise for the future and that Poisson Flow Generative Models are only the beginning.”
Reference: “PFGM++: Unlocking the Potential of Physics-Inspired Generative Models” by Yilun Xu, Ziming Liu, Yonglong Tian, Shangyuan Tong, Max Tegmark and Tommi Jaakkola, 10 February 2023, Computer Science > Machine Learning.
arXiv:2302.04265
Authors on a paper about this work include three MIT graduate students: Yilun Xu of the Department of Electrical Engineering and Computer Science (EECS) and CSAIL, Ziming Liu of the Department of Physics and the NSF AI IAIFI, and Shangyuan Tong of EECS and CSAIL, as well as Google Senior Research Scientist Yonglong Tian PhD ’23. MIT professors Max Tegmark and Tommi Jaakkola advised the research.
The team was supported by the MIT-DSTA Singapore collaboration, the MIT-IBM Watson AI Lab, National Science Foundation grants, The Casey and Family Foundation, the Foundational Questions Institute, the Rothberg Family Fund for Cognitive Science, and the ML for Pharmaceutical Discovery and Synthesis Consortium. Their work was presented at the International Conference on Machine Learning this summer.
News
NIH Scientists Discover Gene Responsible for Rare Eye Disease
Findings supported by the NIH pave the way for the development of genetic testing, clinical trials, and therapies. Researchers at the National Institutes of Health (NIH) and their collaborators have discovered a gene linked to certain [...]
Alzheimer’s Breakthrough: Synthetic THC Pill Proves Effective in Clinical Trial
Patients tolerated synthetic THC (dronabinol) well, without the adverse effects commonly associated with existing Alzheimer’s agitation medications. A study conducted by researchers from Johns Hopkins University School of Medicine and Tufts University School of Medicine found that a pill form [...]
The Future of Rare Disease Treatment with Precision Medicine
Understanding rare diseases Rare diseases affect less than 5 people out of 10,000. However, this still amounts to about 7% of the world’s population, with over 10,000 such conditions. Almost all are genetic in [...]
Doctors issue warning for upcoming ‘tripledemic
The term ‘tripledemic’ has hit headlines this week as the NHS begins its Covid and fluvaccine roll-out for vulnerable adults. As the cold weather sets in, many of us have experienced a decline in health, and this may [...]
The FDA approved a gel that can stop bleeding from wounds in seconds
Aug 15 (Reuters) - The U.S. Food and Drug Administration has cleared Cresilon's gel to quickly control bleeding, the privately held company said on Thursday, potentially giving emergency medical technicians and combat medics a [...]
High levels of microplastics found in prostate tumors, possibly linked to take-out food
The presence of microplastics in prostate tumors points to potential health risks, and researchers are calling for urgent studies to explore how take-out food may be driving this exposure. In a recent study published [...]
AI outperforms radiologists in brain tumor diagnosis
As artificial intelligence advances, its uses and capabilities in real-world applications continue to reach new heights that may even surpass human expertise. In the field of radiology, where a correct diagnosis is crucial to ensure [...]
Breakthrough Study Reveals Molecular Clues to Dementia Origins
Work could lead to the discovery of new therapeutic targets. For the first time, researchers have identified “molecular markers” linked to degeneration—detectable changes in cells and their gene-regulating networks—that are common across several types [...]
Better than blood tests? Nanoparticle potential found for assessing kidneys
In a study published July 29 in Advanced Materials, University of Texas at Dallas researchers found that X-rays of the kidneys using gold nanoparticles as a contrast agent might be more accurate in detecting kidney [...]
Greener nanomaterials could transform how our everyday stuff is made
Tiny nanoparticles are at the forefront of materials science—with special properties that make them great at absorbing light in solar panels, cleaning wastewater, and delivering drugs precisely. Some nanoparticles take the form of sheets or fibers. But nanomaterials all [...]
AI could predict breast cancer risk via ‘zombie cells’
Women worldwide could see better treatment with new AI technology, which enables better detection of damaged cells and more precisely predicts the risk of getting breast cancer, shows new research from the [...]
Through the eyes of a cat – biomimicry of feline eyes may revolutionize robotic vision
In a recent study published in the journal Science Advances, researchers leveraged crucial aspects of feline eyes, particularly their tapetum lucidum and vertically elongated pupils (VP), to develop a monocular artificial vision system capable of [...]
New Alzheimer’s Therapy Shows Remarkable Results in Animal Trials
A study from TUM demonstrates a promising therapeutic approach. Researchers at the Technical University of Munich (TUM) have made promising advances in preventing Alzheimer’s by developing a new therapeutic strategy. Their approach focuses on targeting the amyloid beta [...]
Rewriting Cancer’s Blueprint: New Study Challenges Old Theories
A new study argues for a revised clonal evolution model of cancer, incorporating genetic and non-genetic factors to improve understanding and treatment. Like all living organisms, cancer cells are driven by the fundamental need [...]
Microplastics Everywhere: Experts Demand Worldwide Treaty Before It’s Too Late
A new report calls for global action on plastic pollution, urging reductions in plastic production and microplastic emissions. Researchers stress the importance of addressing plastic pollution through both scientific and social science perspectives. A [...]
Blood tests could soon predict your risk of Alzheimer’s
Scientists are closing in on biomarkers that reflect the progression of Alzheimer’s disease and could improve treatments. Like many Alzheimer’s researchers, neurologist Randall Bateman is not prone to effusiveness, having endured disappointments in his [...]