| Notwithstanding the wishful thinking of certain irresponsible and incompetent public figures, the only options to control and deal with the spread of the Severe Acute Respiratory Syndrome Virus 2 (SARS-CoV-2) are fast, cheap, reliable, and portable means of diagnosing COVID-19 infection (the name of disease caused by SARS-CoV-2); therapeutics to treat the infected; and vaccines to rapidly build up immunization of large parts of the global population. | |
| In a previous Nanowerk Spotlight we covered nanotechnology-based approaches to testing for COVID-19 infections in high-risk individuals. Today we look at the role of nanotechnology in countering the conventional limitations of antiviral and biological therapeutics. Nanocarriers also have potential to design risk-free and effective immunization strategies for SARS-CoV-2 vaccine candidates such as protein constructs and nucleic acids. | |
| A review paper in ACS Nano (“Nanotechnology for COVID-19: Therapeutics and Vaccine Research”) provides systematic information on nanomedicine strategies employed to deliver small molecules, biologicals (specifically RNAi) and various combination therapies. Some strategies are also proposed for the rational development of this nanomedicine approach and its clinical translation. Since most of the COVID-19 vaccine candidates are sophisticated biological moieties (DNA, mRNA, recombinant proteins, engineered APCs etc.), the scope of nanocarrier delivery becomes highly pertinent. | |
| The authors first describe in great detail the current state of knowledge about the virus’s life cycle, pathophysiology and structure, and then address the organ systems primarily affected by SARS-CoV-2 (it affects the respiratory system first and then spreads systemically to the heart, liver and kidney). | |
Developing SARS-CoV-2 therapeutics |
|
| Today there is no exclusive antiviral treatment against SARS-CoV-2 although therapeutic and prophylactic strategies to deal with existing and potentially upcoming coronavirus infections are under development in research laboratories worldwide. | |
| Using recently available genetic information and protein structure modelling, several therapeutic strategies based on drug repurposing are projected for the immediate treatment of infected patients. | |
| According to the authors, target identification to halt the pathogenesis of the viral infection holds the key in this development: “Viral protease (3CLpro and PLpro), host cell produced protease (TMPRSS2), RNA polymerase (RdRp), interaction site of viral S protein with host receptor ACE2 are among the major targets identified for repurposing already existing antiviral molecules and new small molecules under development.” | |
| Other proposed strategies are targeting the SARS-CoV-2 surface S protein using neutralizing antibody (nAbs) and targeting the SARS-CoV-2 viral RNA genome using RNA interference (RNAi) or antisense oligonucleotides. | |
Developing a vaccine against COVID-19 |
|
| Massive efforts are being employed across the world to develop safe and effective vaccines and several vaccine candidates (see Table 1 in the review for details) have already made it to human clinical trials as a result of fast-tracked development strategies and advanced vaccine technological platforms (read more here in The New England Journal of Medicine: “Developing Covid-19 Vaccines at Pandemic Speed”). | |
| Similar to what researchers are doing in developing SARS-CoV-2 therapeutics, the target strategy for most of the vaccine candidates is to induce nAbs against the viral S protein, averting the ACE2 mediated host uptake. | |
| In the case of SARS-CoV vaccine development, higher nAbs titers and better protection was reported with S protein subunit vaccines when compared to any other target strategy. SARS/MERS vaccine development research suggests S protein subunits, RBD of the S1 subunit and S protein/gene as the most preferred target sites. | |
| The development of COVID-19 vaccine candidates are relying on several high-tech platforms including attenuated and inactivated viruses, replicating and non replicating viral vectors, DNA and mRNA, virus-like particles and recombinant protein-based approaches. |
Image Credit: Envato/ Amanda Scott
![]()
News This Week
AI Helped Scientists Stop a Virus With One Tiny Change
Using AI, researchers identified one tiny molecular interaction that viruses need to infect cells. Disrupting it stopped the virus before infection could begin. Washington State University scientists have uncovered a method to interfere with a key [...]
Deadly Hospital Fungus May Finally Have a Weakness
A deadly, drug-resistant hospital fungus may finally have a weakness—and scientists think they’ve found it. Researchers have identified a genetic process that could open the door to new treatments for a dangerous fungal infection [...]
Fever-Proof Bird Flu Variant Could Fuel the Next Pandemic
Bird flu viruses present a significant risk to humans because they can continue replicating at temperatures higher than a typical fever. Fever is one of the body’s main tools for slowing or stopping viral [...]
What could the future of nanoscience look like?
Society has a lot to thank for nanoscience. From improved health monitoring to reducing the size of electronics, scientists’ ability to delve deeper and better understand chemistry at the nanoscale has opened up numerous [...]
Scientists Melt Cancer’s Hidden “Power Hubs” and Stop Tumor Growth
Researchers discovered that in a rare kidney cancer, RNA builds droplet-like hubs that act as growth control centers inside tumor cells. By engineering a molecular switch to dissolve these hubs, they were able to halt cancer [...]
Platelet-inspired nanoparticles could improve treatment of inflammatory diseases
Scientists have developed platelet-inspired nanoparticles that deliver anti-inflammatory drugs directly to brain-computer interface implants, doubling their effectiveness. Scientists have found a way to improve the performance of brain-computer interface (BCI) electrodes by delivering anti-inflammatory drugs directly [...]
After 150 years, a new chapter in cancer therapy is finally beginning
For decades, researchers have been looking for ways to destroy cancer cells in a targeted manner without further weakening the body. But for many patients whose immune system is severely impaired by chemotherapy or radiation, [...]
Older chemical libraries show promise for fighting resistant strains of COVID-19 virus
SARS‑CoV‑2, the virus that causes COVID-19, continues to mutate, with some newer strains becoming less responsive to current antiviral treatments like Paxlovid. Now, University of California San Diego scientists and an international team of [...]
Lower doses of immunotherapy for skin cancer give better results, study suggests
According to a new study, lower doses of approved immunotherapy for malignant melanoma can give better results against tumors, while reducing side effects. This is reported by researchers at Karolinska Institutet in the Journal of the National [...]
Researchers highlight five pathways through which microplastics can harm the brain
Microplastics could be fueling neurodegenerative diseases like Alzheimer's and Parkinson's, with a new study highlighting five ways microplastics can trigger inflammation and damage in the brain. More than 57 million people live with dementia, [...]
Tiny Metal Nanodots Obliterate Cancer Cells While Largely Sparing Healthy Tissue
Scientists have developed tiny metal-oxide particles that push cancer cells past their stress limits while sparing healthy tissue. An international team led by RMIT University has developed tiny particles called nanodots, crafted from a metallic compound, [...]
Gold Nanoclusters Could Supercharge Quantum Computers
Researchers found that gold “super atoms” can behave like the atoms in top-tier quantum systems—only far easier to scale. These tiny clusters can be customized at the molecular level, offering a powerful, tunable foundation [...]
A single shot of HPV vaccine may be enough to fight cervical cancer, study finds
WASHINGTON -- A single HPV vaccination appears just as effective as two doses at preventing the viral infection that causes cervical cancer, researchers reported Wednesday. HPV, or human papillomavirus, is very common and spread [...]
New technique overcomes technological barrier in 3D brain imaging
Scientists at the Swiss Light Source SLS have succeeded in mapping a piece of brain tissue in 3D at unprecedented resolution using X-rays, non-destructively. The breakthrough overcomes a long-standing technological barrier that had limited [...]
Scientists Uncover Hidden Blood Pattern in Long COVID
Researchers found persistent microclot and NET structures in Long COVID blood that may explain long-lasting symptoms. Researchers examining Long COVID have identified a structural connection between circulating microclots and neutrophil extracellular traps (NETs). The [...]
This Cellular Trick Helps Cancer Spread, but Could Also Stop It
Groups of normal cbiells can sense far into their surroundings, helping explain cancer cell migration. Understanding this ability could lead to new ways to limit tumor spread. The tale of the princess and the [...]















