Selenium (Se) is an essential element found in aquatic feeds that promotes the proper development, wellbeing, and fitness of marine animals. Selenium can be transformed into nanomaterials that are more easily accessible, absorbed, and consumed by aquatic species using nanotechnology.
A paper published recently in the journal Reviews in Aquaculture provides a complete assessment of the effects of Se and Se nanoparticles (Se-NPs) in aquafeeds on marine animals. The study shows that nanoparticles can boost the usage and retention of Se in aquafeeds while lowering its toxicity.
Nanotechnology in Aquaculture Industry
The human population is expected to grow significantly, reaching around nine billion individuals by 2050. This is projected to put additional strain on the food manufacturing industry as it reacts to rising demand. Aquaculture, the fastest-growing food generation sector, has made substantial contributions to worldwide food and nutritional sustainability.
However, the sector’s long-term viability is jeopardized by growing feed prices as traditional feed materials become scarce and costly. To meet the blue economy aims, efforts have been undertaken to improve the accessibility and usage of current components.
Nanotechnology utilization is a new but extremely promising technical innovation in the aquaculture sector. Nanomaterials and emulsion-based methods can be used in aquafeed development, disease management, and water filtration.
Nanomaterials can significantly improve the resource utilization of aquaculture resources including medications, vaccines, powdered feeding, and even gene transfer.
Selenium (Se): A Vital Microelement in Aquatic Animals
Selenium (Se) is an essential microelement in marine animals with both nutritional and cytotoxic effects. Compared with organic components, the inorganic species of Se travels quickly through the fish intestines and has poor absorption and digestion. As a result, organic Se is suggested as the primary type of Se supplement in the diets of aquatic animals.
Selenium nanoparticles (Se-NPs) have lately shown several uses in aquafeeds due to their high absorption and anti-oxidation capabilities in marine animals. Se-NPs have been widely studied in aquafeeds, with documented advantages including improved growth efficiency, nutrient uptake, antioxidant effectiveness, immunological response, and infection resistance.
Disadvantages of Selenium Nanoparticles (Se-NPs) as Aquafeeds
Despite the many prospective advantages of Se-NPs in aquaculture, their usage can be hampered by a lack of understanding of dose-response impacts on fish quality and product safety.
Se-NPs have a restricted range of consumption in fish diets because larger amounts might be poisonous. At the same time, a lack of these important components could harm fish health by inducing tissue damage and decreasing physiological activities.
Limitations of Previous Studies
Investigations on the effects of Se consumption and its nanoscale particles in aquaculture have been oriented mostly toward fish populations, with little attention paid to other marine animals. As a result, significant gaps in current understanding remain, notably regarding the responsiveness of shrimps and crustaceans to diets supplemented with Se and Se-NPs.
Some economically important species and developmental stages have also been overlooked in prior research, limiting the use of nanomaterials in aquafeed synthesis and production.
Highlights of the Current Work
Selenium is an essential nutrient aquatic animals need for appropriate development and physiological activities. It has shown significant benefits, including increased feed efficiency, nutritional digestion, blood circulation, intestinal morphology, antioxidant properties, immunology, and tolerance to infections and environmental contaminants.
However, the needed amounts in the diets vary depending on the aquatic species, and any variation from the acceptable range has negative consequences due to the high toxicity of Se.
The positive benefits of Se may be boosted by nanotechnology by transforming it to its nanoparticle form (Se-NPs), which is better absorbed by animals and has a broader intake range. Because aquatic animals easily digest Se-NPs, they may satisfy nutritional needs in aquafeeds at low inclusion concentrations.
Future Outlook and Avenues for Further Research
In the future, investigators should study all developmental periods of both fish and crustaceans to identify the most important aquaculture species in domestic and foreign markets. Molecular techniques should be employed to acquire a thorough understanding of the regulatory mechanisms that Se-NPs use to boost the antioxidant activities and immunology of marine animals.
This would be essential information for the industrialization of aquaculture nanoscale materials. Future studies on including Se-NPs in aquaculture diets can lead to significant gains in fish productivity, ecological sustainability, and disease management throughout the aquaculture sector.

News
Scientists Are Pretty Close to Replicating the First Thing That Ever Lived
For 400 million years, a leading hypothesis claims, Earth was an “RNA World,” meaning that life must’ve first replicated from RNA before the arrival of proteins and DNA. Unfortunately, scientists have failed to find [...]
Why ‘Peniaphobia’ Is Exploding Among Young People (And Why We Should Be Concerned)
An insidious illness is taking hold among a growing proportion of young people. Little known to the general public, peniaphobia—the fear of becoming poor—is gaining ground among teens and young adults. Discover the causes [...]
Team finds flawed data in recent study relevant to coronavirus antiviral development
The COVID pandemic illustrated how urgently we need antiviral medications capable of treating coronavirus infections. To aid this effort, researchers quickly homed in on part of SARS-CoV-2's molecular structure known as the NiRAN domain—an [...]
Drug-Coated Neural Implants Reduce Immune Rejection
Summary: A new study shows that coating neural prosthetic implants with the anti-inflammatory drug dexamethasone helps reduce the body’s immune response and scar tissue formation. This strategy enhances the long-term performance and stability of electrodes [...]
Scientists discover cancer-fighting bacteria that ‘soak up’ forever chemicals in the body
A family of healthy bacteria may help 'soak up' toxic forever chemicals in the body, warding off their cancerous effects. Forever chemicals, also known as PFAS (per- and polyfluoroalkyl substances), are toxic chemicals that [...]
Johns Hopkins Researchers Uncover a New Way To Kill Cancer Cells
A new study reveals that blocking ribosomal RNA production rewires cancer cell behavior and could help treat genetically unstable tumors. Researchers at the Johns Hopkins Kimmel Cancer Center and the Department of Radiation Oncology and Molecular [...]
AI matches doctors in mapping lung tumors for radiation therapy
In radiation therapy, precision can save lives. Oncologists must carefully map the size and location of a tumor before delivering high-dose radiation to destroy cancer cells while sparing healthy tissue. But this process, called [...]
Scientists Finally “See” Key Protein That Controls Inflammation
Researchers used advanced microscopy to uncover important protein structures. For the first time, two important protein structures in the human body are being visualized, thanks in part to cutting-edge technology at the University of [...]
AI tool detects 9 types of dementia from a single brain scan
Mayo Clinic researchers have developed a new artificial intelligence (AI) tool that helps clinicians identify brain activity patterns linked to nine types of dementia, including Alzheimer's disease, using a single, widely available scan—a transformative [...]
Is plastic packaging putting more than just food on your plate?
New research reveals that common food packaging and utensils can shed microscopic plastics into our food, prompting urgent calls for stricter testing and updated regulations to protect public health. Beyond microplastics: The analysis intentionally [...]
Aging Spreads Through the Bloodstream
Summary: New research reveals that aging isn’t just a local cellular process—it can spread throughout the body via the bloodstream. A redox-sensitive protein called ReHMGB1, secreted by senescent cells, was found to trigger aging features [...]
AI and nanomedicine find rare biomarkers for prostrate cancer and atherosclerosis
Imagine a stadium packed with 75,000 fans, all wearing green and white jerseys—except one person in a solid green shirt. Finding that person would be tough. That's how hard it is for scientists to [...]
Are Pesticides Breeding the Next Pandemic? Experts Warn of Fungal Superbugs
Fungicides used in agriculture have been linked to an increase in resistance to antifungal drugs in both humans and animals. Fungal infections are on the rise, and two UC Davis infectious disease experts, Dr. George Thompson [...]
Scientists Crack the 500-Million-Year-Old Code That Controls Your Immune System
A collaborative team from Penn Medicine and Penn Engineering has uncovered the mathematical principles behind a 500-million-year-old protein network that determines whether foreign materials are recognized as friend or foe. How does your body [...]
Team discovers how tiny parts of cells stay organized, new insights for blocking cancer growth
A team of international researchers led by scientists at City of Hope provides the most thorough account yet of an elusive target for cancer treatment. Published in Science Advances, the study suggests a complex signaling [...]
Nanomaterials in Ophthalmology: A Review
Eye diseases are becoming more common. In 2020, over 250 million people had mild vision problems, and 295 million experienced moderate to severe ocular conditions. In response, researchers are turning to nanotechnology and nanomaterials—tools that are transforming [...]