In new research published in Nature Communications, University of Sussex scientists demonstrate how a highly conductive paint coating that they have developed mimics the network spread of a virus through a process called ‘explosive percolation’ – a mathematical process which can also be applied to population growth, financial systems and computer networks, but which has not been seen before in materials systems. The finding was a serendipitous development as well as a scientific first for the researchers.
The process of percolation – the statistical connectivity in a system, such as when water flows through soil or through coffee grounds – is an important component in the development of liquid technology. And it was that process which researchers in the University of Sussex Material Physics group were expecting to see when they added graphene oxide to polymer latex spheres, such as those used in emulsion paint, to make a polymer composite.
But when they gently heated the graphene oxide to make it electrically conductive, the scientists kick-started a process that saw this conductive system grow exponentially, to the extent that the new material created consumed the network, similar to the way a new strain of a virus can become dominant. This emergent material behaviour led to a new highly-conductive paint solution that, because graphene oxide is a cheap and easy to mass produce nanomaterial, is both one of the most affordable and most conductive low-loading composites reported. Before, now, it was accepted that such paints or coatings were necessarily one or the other.
Electrically conductive paints and inks have a range of useful applications in new printed technologies, for example by imparting coatings with properties such as anti-static or making coatings that block electromagnetic interference (EMI), as well as being vital in the development of wearable health monitors.
Alan Dalton, Professor of Experimental Physics, who heads up the Materials Physics Group at the University of Sussex explains the potential of this serendipitous finding: “My research team and I have been working on developing conductive paints and inks for the last ten years and it was to both my surprise and delight that we have discovered the key to revolutionising this work is a mathematical process that we normally associate with population growth and virus transmission.
“By enabling us to create highly-conductive polymer composites that are also affordable, thanks to the cheap and scalable nature of graphene oxide, this development opens up the doors to a range of applications that we’ve not even been able to fully consider yet, but which could greatly enhance the sustainability of Electric Vehicle materials – including batteries – as well as having the potential to add conductive coatings to materials, such as ceramics, that aren’t inherently so. We can’t wait to get going on exploring the possibilities.”
“The growth of this network is analogous to the emergence of high-transmission viral variants and could allow us to use epidemic modelling to develop exciting new materials or even materials to understand epidemic transmission.”
About the Experiment:
The scientists took polymer latex spheres and added graphene oxide. Through drying this solution, as you would dry paint, the graphene oxide becomes trapped between the spheres and as more graphene is added, the sheets eventually form a ‘percolating’ network within the latex film.
However, because graphene oxide isn’t electrically conductive, the scientists performed some mild heating to eliminate chemical defects (150C, similar to the temperature of a heat gun used to dry paint). When they did this, they found that the films not only become conductive – as expected – but became more conductive than if they were made entirely from the graphene.
The reason for this is that the sheets are trapped together between the latex spheres (rather than randomly arranged), the mild heating kick-starts chemical modification of the graphene which in turn chemically modifies the polymer to produce small molecules which crosslink (form chemical bridges between) the sheets which dramatically increases their conductivity. This phenomenon where, only at the point of percolation, the materials go through a ‘phase transition’ to form a completely different network than if they weren’t connected is known as ‘explosive percolation’. It can be thought of reaching a critical level of connectivity where the new material grows explosively through the network.

News
DREAM complex could hold key to fighting cancer and living longer
DNA may be the stuff of life, but if it isn't repaired in our bodies on a regular basis, it can lead to diseases that can cause some pretty unpleasant types of death. DNA [...]
A Promising New Pathway in the Battle Against Aggressive Prostate Cancer
Neuronal Molecule Makes Prostate Cancer More Aggressive Researchers discover a potential therapeutic avenue against an aggressive form of prostate cancer. Prostate cancer is the second most common cancer and the second leading cause of [...]
Nasal Vaccines: Stopping the COVID-19 Virus Before It Reaches the Lungs
The Pfizer-BioNTech and Moderna mRNA vaccines have played a large role in preventing deaths and severe infections from COVID-19. But researchers are still in the process of developing alternative approaches to vaccines to improve [...]
NASA Tracking a Huge, Growing Anomaly in Earth’s Magnetic Field – with video
NASA is actively monitoring a strange anomaly in Earth's magnetic field: a giant region of lower magnetic intensity in the skies above the planet, stretching out between South America and southwest Africa. This vast, developing [...]
New, Better Models Show How Infectious Diseases Like COVID-19 Spread
Infectious diseases such as COVID-19 can spread rapidly across the globe. Models that can predict how such diseases spread will strengthen national surveillance systems and improve public health decision-making. The COVID-19 pandemic has emphasized the [...]
Human Antibodies Discovered That Can Block Multiple Coronaviruses Including COVID-19
Results from a Scripps Research and UNC team pave the way for a vaccine and therapeutic antibodies that could be stockpiled to fight future coronavirus pandemics. A team of scientists from Scripps Research and [...]
Nanotechnology could be used to treat lymphedema
The human body is made up of thousands of tiny lymphatic vessels that ferry white blood cells and proteins around the body, like a superhighway of the immune system. It's remarkably efficient, but if [...]
DNA Nanotechnology Tools – From Design to Applications
Suite of DNA nanotechnology devices engineered to overcome specific bottlenecks in the development of new therapies, diagnostics, and understanding of molecular structures. DNA nanostructures with their potential for cell and tissue permeability, biocompatibility, and [...]
Regenerating bone with deer antler stem cells
Scientists from a collection of Chinese research institutions collaborated on a study of organ regeneration in mammals, finding deer antler blastema progenitor cells are a possible source of conserved regeneration cells in higher vertebrates. [...]
AI Takes On Cancer: Analysis of Mutations Could Lead to Improved Therapy
Cancer is a complex and diverse disease, and its range of associated mutations is vast. The combination of these genomic changes in an individual is referred to as their “mutational landscape.” These landscapes vary [...]
Exposing tumours to bacteria converts immune cells to cancer killers
New research on inflammation could lead to better treatments to improve outcomes for people with advanced or previously untreatable cancers. Introducing bacteria to a tumour’s microenvironment creates a state of acute inflammation that triggers [...]
Smart nanotechnology for more accurate delivery of insulin
More efficient and longer lasting glucose-responsive insulin that eliminates the need for people with type 1 diabetes to measure their glucose levels could be a step closer thanks to a Monash University-led project. Published [...]
Efficiently Harvesting Rare Earth Elements From Wastewater Using Exotic Bacteria
The novel strains of cyanobacteria exhibit a fast and efficient “biosorption” of rare earth elements, making recycling possible. Rare earth elements (REEs) are a set of 17 metallic elements that possess similar chemical properties. [...]
Resisting Treatment: Cancer Cells Shrink or Super-Size To Survive
A new approach to image analysis has uncovered how cancer cells manipulate their size as a means of resisting treatment. Researchers have discovered that cancer cells are capable of either shrinking or super-size themselves [...]
New Research Explains Why Children Avoid Severe COVID-19 Symptoms
According to new research, children exhibit a robust initial immune response to the coronavirus, however, they are unable to transfer this response to long-lasting memory T cells like adults do. Researchers led by scientists [...]
Scientists Unravel Protein Map of Mitochondria
A new study sheds light on the organization of proteins within mitochondria. Mitochondria, the “powerhouses” of cells, play a crucial role in the energy production of organisms and are involved in various metabolic and [...]