The latest study published in the Journal of Cleaner Production focuses on the effective utilization of magnetic nanoparticles for the primary purpose of water treatment to remove toxic wastes such as organic substances, hazardous metal ions, radioisotopes, and other hazardous substances.
Why is the Development of Effective Treatment Solutions Necessary?
The availability of safe freshwater is essential for a sustainable ecosystem and all the species residing in it. Industrial and domestic anthropogenic activities are the primary causes of the discharge of pollutants such as microorganisms, toxic metals, and organic pigments.
All such factors jeopardize the likelihood of availability of pure water and may cause long-term permanent damage as well as the genetic alteration in living species, leading to mortality via long-term overdose of toxins. As a result, the sustainable deployment of efficient, dependable, and relatively inexpensive wastewater treatment technologies is critical.
What are Magnetic Nanoparticles?
Magnetic nanoparticles constitute several metals, including Fe (Iron) and Cobalt (Co) which impart advantageous magnetic properties that can be altered by varying an external magnetic field.
These substances are nontoxic, and their extensive size distribution (comprising of a few nanometers to a few micrometers) allows them to be specifically used in a variety of biochemical functions.
Advantages of Magnetic Nanoparticles
MNPs have been frequently used for pollutants removal due to their numerous benefits, including substantial upscale manufacturing, adjustable characteristics, simple crosslinking, eco-friendliness, reusability, and chemical stability.
Owing to their diverse concentrations and structures, they can absorb pollutants from water bodies. They have been specially created for a multitude of ecological applications founded mainly on the separation process and adsorptive properties.
Additionally, their exterior qualities can be altered to increase the interaction with the contaminants that need to be isolated. MNPs are very inexpensive and have good recycling properties following dye adsorption. These are the primary causative factors for the inclusion of magnetic absorbent compounds in several experiments to be viable options for removing a wide range of water pollutants.
Utilization In Removal of Heavy Metal Ions
Harmful metallic substances enter water systems primarily via mining, textiles, insecticides, pigments, and chemical waste metallurgical processes, leading to metallic carcinogens that are hazardous to all animals. Such ions can accumulate in biological systems and their organs, such as the nervous system, liver, and renal organs. After prolonged exposure, they can inflict long-term injury to the body.
Since such ions are non-biodegradable, conventional techniques such as sedimentation processing, centrifugation, membrane filtration, and cyclic citrullinated peptide (CCP) have been applied for their removal. These newly produced MNPs are distinguished by the presence of carboxylic and hydroxyl functionalities, which exhibit outstanding magnetization and aqueous miscibility, making them perfect for the abatement of Arsenic and Vanadium ions.
Additionally, a magnetized chitin bio-absorbent with graphene nanoparticles and chitosan has been developed for recovering Lead ions from aquatic wastes.
Are MNPs Effective for Adsorption of Organic Waste?
Organic chemical contamination of ecological resources via a range of commercial origins due to rising industrialization is a great challenge worldwide. Numerous organic substances (preservatives, polyphenols, herbicides, and so forth) have been discovered in quantities exceeding the acceptable amount in drinking water, inducing mutagenicity and neurotoxicity in humans.
MNPs have sparked great enthusiasm in water treatment as sorbent materials owing primarily due to their rapid segregation and complexation with an applied magnetic field. Non-coated and methyl acrylic acid (MAA)-coated MNPs were used to remove phenolic substances from water solution, with phenol extraction efficacy of 550 mg g-1 for uncovered MNPs and 950 mg g-1 for coated MNPs.
Furthermore, integrating magnetized and carbon-based substances has added the advantages of rapid removal with elevated recyclability efficacy.
Utilization in Dye Absorption and Radioactive Substances
Many novel platforms, such as graphite, silicon, quartz, and CNTs, are made from metal oxides and utilized to extract dyes, notably bromothymol blue. Because of the increased use of nuclear energy, radioisotopes and toxic nuclear materials are discharged into the drinking water.
A magnetized chitosan nanocomposite has been created to eliminate extra radioactive particles from contaminated water. The findings indicated that the produced magnetic nanoparticles effectively absorbed radioactive elements such as Thorium.
Future Perspective
Considerable work has been done in the past few years, notably with the shift from pure MNPs that employ the physical adsorption method to polymerized MNPs that have exhibited significant improvements in sorption.
Quantitative quantum modeling should be used to study the morphology, properties, and physical adsorption of MNPs. This would result in an enhanced comprehension of such nanoparticles leading to improved separation properties and increased commercialization.

News
Biopharma Creates New Generation LNPs In A Run For A More Efficient COVID-19 Vaccine
The COVID-19 pandemic highlighted the need for fast-produced and adaptable vaccines that could be equally distributed around the world. Developing an efficient mRNA vaccine that is effective, thermostable, and has fewer side effects strongly [...]
Researchers Assess How Well Machine Learning Predicts Nanotoxicology
Engineered nanomaterials (ENMs) have found their applications in various technologies and consumer products. Manipulating chemicals at the nanoscale range introduces unique characteristics to these materials and makes them desirable for technological applications. With the [...]
Smart nanoparticle shows that intermittent fasting may protect the heart from damage during chemotherapy
Although chemotherapy can be a lifesaving treatment for patients with cancer, some of these medications can damage the heart. A team led by researchers at Massachusetts General Hospital (MGH) recently developed a nanoparticle probe [...]
From nasal vaccines to pills: the next defences against Covid
When the autumn booster programme begins next month, many people are likely to receive Moderna’s new bivalent vaccine, designed to protect against the original Covid strain and the more transmissible Omicron variant. As Covid continues [...]
Novel design for nanoparticles that train immune cells into fighting cancer
Scientists of the department of Advanced Organ Bioengineering and Therapeutics (TechMed Centre) recently published a novel cancer immune therapy in the scientific journal Nature Communications ("Cancer immune therapy using engineered ‛tail-flipping’ nanoliposomes targeting alternatively activated macrophages"). [...]
Smart contact lenses for cancer diagnostics and screening
Scientists from the Terasaki Institute for Biomedical Innovation (TIBI) have developed a contact lens that can capture and detect exosomes, nanometer-sized vesicles found in bodily secretions which have the potential for being diagnostic cancer [...]
Novel Nanoplatform Found Effective Against Esophageal Cancer
Among the total number of deaths caused by different types of cancer, esophageal cancer is the sixth most significant. Several conventional treatments, such as radiotherapy, chemotherapy, and surgery have multiple side effects, including off-target [...]
Stem Cell Membrane-Coated Nanoparticles in Tumor Therapy
Cell membrane-coated nanoparticles, applied in targeted drug delivery strategies, combine the intrinsic advantages of synthetic nanoparticles and cell membranes. Although stem cell-based delivery systems were highlighted for their targeting capability in tumor therapy, inappropriate [...]
The TB Vaccine Mysteriously Protects Against Lots of Things. Now We Know Why
When babies in the African countries of Guinea Bissau and Uganda were given the tuberculosis vaccine, something remarkable happened. Instead of the vaccine only protecting against the target bacteria – Myocbacterium tuberculosis – the tuberculosis vaccine offered broad protection against a [...]
Extinct Pathogens Ushered The Fall of Ancient Civilizations, Scientists Say
Thousands of years ago, across the Eastern Mediterranean, multiple Bronze Age civilizations took a distinct turn for the worse at around the same time. The Old Kingdom of Egypt and the Akkadian Empire both collapsed, and there was [...]
The Origins of Covid-19 Are More Complicated Than Once Thought
IN OCTOBER 2014, virologist Edward Holmes took a tour of the Huanan Seafood Wholesale Market in Wuhan, a once relatively overlooked city of about 11 million people in the central Chinese province of Hubei. The market would [...]
Self-Healable, Human-Like Artificial Skin
Self-healable ionic sensing materials with fatigue resistance are imperative in robotics and soft electronics for extended service life. The existing artificial ionic skins with self-healing capacity were prepared by network reconfiguration, constituting low-energy amorphous [...]
Nanoparticles increase light scattering, boost solar cell performance
As demand for solar energy rises around the world, scientists are working to improve the performance of solar devices—important if the technology is to compete with traditional fuels. But researchers face theoretical limits on [...]
Scientists Use Shrimp Shell Nanoparticles to Strengthen Cement
When shrimp shell nanoparticles were mixed into cement paste, the material became substantially stronger — researchers propose an innovation that could lead to less seafood waste and fewer carbon dioxide emissions from concrete production. [...]
Does This Video Show A Nanobot Inseminating Egg With “Lazy” Sperm?
A black-and-white video shared on social media showed a microscopic corkscrew-shaped helix as it appeared to consume a sperm, transport it, and ultimately lead the little swimmer into the wall of an [...]
Study Could Help Reduce Environmental Risk of Quantum Dots
Polymers containing quantum dots (QDs) are considered crucial components of next-generation consumer items, but ambiguity remains regarding how these compounds may negatively affect public health and the environment. A pre-proof paper from the Journal of Hazardous [...]