The development of scaffold materials, such as nanoporous and nanofibrous hydrogel for biomedical applications, using green processes is a desirable approach.
Natural biopolymers have been utilized for wound dressing, owing to their bioactive compounds content, mechanical properties, biodegradability, porosity, and proper surface chemistry.
What is Silk Waste?
Silk waste includes different types of raw silks that are unwindable. Even though the composition of silk waste is very much similar to that of good silk, it cannot be utilized for the production of silk textiles.
Typically, silk waste is composed of silk fibroin (SF) core polymer (75−83%) and a sericin glue-like protein as a coating (17−25%).
SF is a natural protein of semi-crystalline structure which provides robust stiffness and impressive strength to silk.
SF has been utilized in various healthcare and biomedical products because of its biodegradability, good mechanical property, biocompatibility with human tissue, flexible morphology, drug permeability, antioxidant and hypolipidemic properties, and nontoxicity.
The US Food and Drug Administration (FDA) has approved SF protein from Bombyx mori silkworm for biomedical purposes.
Production of Polymeric Nanofibers by Electrospinning Method
Electrospinning is one of the most popular, simple, and scalable techniques used for producing polymeric nanofibers used for wound dressing.
Scientists have found that binary blends of SF with other materials enhance the properties of resultant scaffolds, due to the synergistic influence of both components.
Interestingly, the physiochemical properties of nanofibers can be controlled by optimizing the electrospinning parameters to attain the requirements of specific applications.
Typically, organic solvents are used in the electrospinning process due to their high dipole moment, conductivity, dielectric constant, and low surface tension. However, the majority of the organic solvents, such as dichloromethane, formic acid, and hexafluoroisopropanol (HFIP), are toxic.
Very few reports are available on the production of SF nanofiber materials via electrospinning process based on SF/poly(vinyl alcohol) (PVA) and SF/ poly(ethylene oxide) (PEO) in water and water/methanol systems.
However, scientists reported that the fabricated SF nanofibers are sensitive to moisture and can dissolve in the biological system before utilization.
Development of Strong Silk-Fibroin/Poly(ethylene oxide) Non-woven Nanofibers – A New Study
Generally, electrospun processes require some additives to stabilize the nanofibers after their synthesis. However, previous studies have indicated that these additives account for biological risks when used for biomedical purposes.
The new study reported on the development of an additive-free system that involves partial evaporation of the initial solving agent, which is followed by methanolic treatment to enhance the structural morphology.
The additive-free system also aids in improving the mechanical properties of the fabricated nanofibers.
Cross-linking techniques enable the nanofibrous materials to maintain the porosity and stability of the structure.
The radiation-induced crosslinking technique is known to be a green process for the production of hydrogel or scaffold. This is because the entire process, i.e., from the sample preparation to processing, is performed under liquid or solid-state.
The irradiation method utilizes γ-rays or electron beams (EBs) for sterilization of biomedical materials and production hydrogels with wide-ranging applications.
In the new study, scientists explored a dual green route to obtain strengthened SF-based nonwoven nanofibers using pure water for electrospinning and EB-assisted cross-linking technique.
For the fabrication of SF-PEO nanofibers, scientists primarily optimized the electrospinning process using SF/poly(PEO) in a pure water solution for the production of non-woven nanofibers.
Secondly, they focussed on stabilizing the dissoluble SF/ PEO non-woven nanofibers via cross-linking networks developed by a free radical reaction using EB irradiation.
Scientists revealed that this newly designed process lead to the production of cylindrical-shaped, smooth, and elongated SF-PEO nanofibers with a diameter of 169 ± 5 nm, under moderate conditions.
To achieve maximum stability in the fabricated nanofibers, the authors optimized the EB irradiation dose to be 25 kGy for cross-linking, and ~50% gel fraction.
The optimized conditions significantly improved the mechanical properties of the SF/PEO nanofiber.
The tensile strength and elongation at break were augmented and the ductility was increased approximately 22-fold.
Benefits of Silk-Fibroin/Poly(ethylene oxide) Non-woven Nanofibers
The authors reported that cross-linked SF/PEO nanofibers supported cell proliferation and were found to be non-toxic to skin fibroblast cells.
This strongly implies that this nanofiber material could be used for healthcare and biomedical purposes.
One of the important contributions of this study has been the utilization of the 3G strategy, i.e., green electrospinning, green EB irradiation process, and green renewable polymers (silk waste), for the production of non-toxic, strong, stable nanofibers, ideal for wound dressings.
Additionally, the swelling and water absorption property of the SF-PEO nanofiber could be utilized for drug entrapment and controlled release application.
News
Deadly Pancreatic Cancer Found To “Wire Itself” Into the Body’s Nerves
A newly discovered link between pancreatic cancer and neural signaling reveals a promising drug target that slows tumor growth by blocking glutamate uptake. Pancreatic cancer is among the most deadly cancers, and scientists are [...]
This Simple Brain Exercise May Protect Against Dementia for 20 Years
A long-running study following thousands of older adults suggests that a relatively brief period of targeted brain training may have effects that last decades. Starting in the late 1990s, close to 3,000 older adults [...]
Scientists Crack a 50-Year Tissue Mystery With Major Cancer Implications
Researchers have resolved a 50-year-old scientific mystery by identifying the molecular mechanism that allows tissues to regenerate after severe damage. The discovery could help guide future treatments aimed at reducing the risk of cancer [...]
This New Blood Test Can Detect Cancer Before Tumors Appear
A new CRISPR-powered light sensor can detect the faintest whispers of cancer in a single drop of blood. Scientists have created an advanced light-based sensor capable of identifying extremely small amounts of cancer biomarkers [...]
Blindness Breakthrough? This Snail Regrows Eyes in 30 Days
A snail that regrows its eyes may hold the genetic clues to restoring human sight. Human eyes are intricate organs that cannot regrow once damaged. Surprisingly, they share key structural features with the eyes [...]
This Is Why the Same Virus Hits People So Differently
Scientists have mapped how genetics and life experiences leave lasting epigenetic marks on immune cells. The discovery helps explain why people respond so differently to the same infections and could lead to more personalized [...]
Rejuvenating neurons restores learning and memory in mice
EPFL scientists report that briefly switching on three “reprogramming” genes in a small set of memory-trace neurons restored memory in aged mice and in mouse models of Alzheimer’s disease to level of healthy young [...]
New book from Nanoappsmedical Inc. – Global Health Care Equivalency
A new book by Frank Boehm, NanoappsMedical Inc. Founder. This groundbreaking volume explores the vision of a Global Health Care Equivalency (GHCE) system powered by artificial intelligence and quantum computing technologies, operating on secure [...]
New Molecule Blocks Deadliest Brain Cancer at Its Genetic Root
Researchers have identified a molecule that disrupts a critical gene in glioblastoma. Scientists at the UVA Comprehensive Cancer Center say they have found a small molecule that can shut down a gene tied to glioblastoma, a [...]
Scientists Finally Solve a 30-Year-Old Cancer Mystery Hidden in Rye Pollen
Nearly 30 years after rye pollen molecules were shown to slow tumor growth in animals, scientists have finally determined their exact three-dimensional structures. Nearly 30 years ago, researchers noticed something surprising in rye pollen: [...]
NanoMedical Brain/Cloud Interface – Explorations and Implications. A new book from Frank Boehm
New book from Frank Boehm, NanoappsMedical Inc Founder: This book explores the future hypothetical possibility that the cerebral cortex of the human brain might be seamlessly, safely, and securely connected with the Cloud via [...]
How lipid nanoparticles carrying vaccines release their cargo
A study from FAU has shown that lipid nanoparticles restructure their membrane significantly after being absorbed into a cell and ending up in an acidic environment. Vaccines and other medicines are often packed in [...]
New book from NanoappsMedical Inc – Molecular Manufacturing: The Future of Nanomedicine
This book explores the revolutionary potential of atomically precise manufacturing technologies to transform global healthcare, as well as practically every other sector across society. This forward-thinking volume examines how envisaged Factory@Home systems might enable the cost-effective [...]
A Virus Designed in the Lab Could Help Defeat Antibiotic Resistance
Scientists can now design bacteria-killing viruses from DNA, opening a faster path to fighting superbugs. Bacteriophages have been used as treatments for bacterial infections for more than a century. Interest in these viruses is rising [...]
Sleep Deprivation Triggers a Strange Brain Cleanup
When you don’t sleep enough, your brain may clean itself at the exact moment you need it to think. Most people recognize the sensation. After a night of inadequate sleep, staying focused becomes harder [...]
Lab-grown corticospinal neurons offer new models for ALS and spinal injuries
Researchers have developed a way to grow a highly specialized subset of brain nerve cells that are involved in motor neuron disease and damaged in spinal injuries. Their study, published today in eLife as the final [...]















