Graphene-based implant overcomes technical limitation to record brain activity at extremely low frequencies

The body of knowledge about the human brain is growing exponentially, but questions big and small remain unanswered. Researchers have been using electrode arrays to record the brain’s electrical activity for decades, mapping activity in different brain regions to understand what it looks like when everything is working, and what is happening when it is not.
Until now, however, these arrays have only been able to detect activity over a certain frequency threshold. A new technology developed in Barcelona overcomes this technical limitation, unlocking the wealth of information found below 0.1 Hz, while at the same time paving the way for future brain-computer interfaces.
Developed at the Barcelona Microelectronics Institute (IMB-CNM, CSIC) and the Catalan Institute of Nanoscience and Nanotechnology (ICN2, a center of BIST and CSIC), and the CIBER in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), and adapted for brain recordings in collaboration with the August Pi i Sunyer Biomedical Research Institute (IDIBAPS), the technology moves away from electrodes and uses an innovative transistor-based architecture that amplifies the brain’s signals in situ before transmitting them to a receiver.
Furthermore, the use of graphene to build this new architecture means the resulting implant can support many more recording sites than a standard electrode array, plus is slim and flexible enough to be used over large areas of the cortex without being rejected or interfering with normal brain function.
The result is an unprecedented mapping of the kind of low frequency brain activity known to carry crucial information about different events in the brain such as the onset and progression of epileptic seizures and strokes.
For neurologists this means they finally have access to the brain’s whispered clues.
Read more at nanowerk.com

Image Credit:    Nanowerk.com

News This Week

Gene Therapy Promotes Nerve Regeneration

Researchers from the Netherlands Institute for Neuroscience (NIN) and the Leiden University Medical Center (LUMC) have shown that treatment using gene therapy leads to a faster recovery after nerve damage. By combining a surgical [...]

Can man ever build a mind?

The idea that we might create machines more intelligent than ourselves is not new. Myths and folk stories abound with creations such as the bronze automaton Talos, who patrolled the island of Crete in [...]

Cold atoms offer a glimpse of flat physics

These days, movies and video games render increasingly realistic 3-D images on 2-D screens, giving viewers the illusion of gazing into another world. For many physicists, though, keeping things flat is far more interesting. [...]

Viruses as Controllable Nanodevices

Viruses are Nature’s delivery vehicles. Millions of years of evolution have molded them into remarkable machines capable of performing a monumental task vital to their survival: the delivery of genetic material into other organisms. [...]

Updated – NanoApps Medical Inc. Near-Term Projects

NanoApps Medical is investigating the possibility that superparamagnetic nanoparticles (SPIONs) (Figure 1) and other classes of nanoparticles (e.g., gold coated nanoshells) (Figure 2) might have the capacity to target cancerous tumors, metastasizing cancer cells, [...]

2019-01-02T13:43:32+00:00

Leave A Comment