Researchers found that gold "super atoms" can behave like the atoms in top-tier quantum systems—only far easier to scale.
These tiny clusters can be customized at the molecular level, offering a powerful, tunable foundation for the next generation of quantum devices.
Gold Clusters as Scalable Quantum Building Blocks
Quantum computers, sensors, and other advanced technologies depend heavily on the behavior of electrons, especially the way they spin. One of the most precise approaches for high-performance quantum systems uses the spin characteristics of electrons in atoms held within a gas. These gaseous setups offer exceptional accuracy but are extremely difficult to scale into larger quantum devices, including full quantum computers. A research team from Penn State and Colorado State has now shown that a gold cluster can imitate the behavior of these trapped gas-phase atoms, making it possible to access similar spin properties in a format that can be expanded far more easily.
"For the first time, we show that gold nanoclusters have the same key spin properties as the current state-of-the-art methods for quantum information systems," said Ken Knappenberger, department head and professor of chemistry in the Penn State Eberly College of Science and leader of the research team. "Excitingly, we can also manipulate an important property called spin polarization in these clusters, which is usually fixed in a material. These clusters can be easily synthesized in relatively large quantities, making this work a promising proof-of-concept that gold clusters could be used to support a variety of quantum applications."
The work, described in two papers published in ACS Central Science and The Journal of Physical Chemistry Letters, confirms the spin behavior of the gold clusters in detail.
How Electron Spin Shapes Quantum Performance
"An electron's spin not only influences important chemical reactions, but also quantum applications like computation and sensing," said Nate Smith, graduate student in chemistry in the Penn State Eberly College of Science and first author of one of the papers. "The direction an electron spins and its alignment with respect to other electrons in the system can directly impact the accuracy and longevity of quantum information systems."
An electron spins around its axis in a way that can be compared to Earth spinning on its axis, which is tilted relative to the sun. However, electrons can spin either clockwise or counterclockwise. When many electrons in a material spin in the same direction and their tilts match, they become correlated. A material with a strong level of this alignment has high spin polarization.
"Materials with electrons that are highly correlated, with a high degree of spin polarization, can maintain this correlation for a much longer time, and thus remain accurate for much longer," Smith said.
Limitations of Trapped Ions and the Need for New Solutions
The leading method for achieving extremely low error rates in quantum information systems involves trapped atomic ions, which are atoms with an electric charge kept in a gaseous environment. In these setups, electrons can be excited into Rydberg states, which offer long-lasting and precisely defined spin polarizations. These systems also allow electrons to exist in superposition, meaning they can occupy multiple states at the same time until measured. Superposition is fundamental to quantum computing.
"These trapped gaseous ions are by nature dilute, which makes them very difficult to scale up," Knappenberger said. "The condensed phase required for a solid material, by definition, packs atoms together, losing that dilute nature. So, scaling up provides all the right electronic ingredients, but these systems become very sensitive to interference from the environment. The environment basically scrambles all the information that you encoded into the system, so the rate of error becomes very high. In this study, we found that gold clusters can mimic all the best properties of the trapped gaseous ions with the benefit of scalability."
Gold Nanoclusters and Their Quantum Potential
Gold nanostructures have long been studied for applications in optics, sensing, therapeutics and catalysis, but their magnetic and spin-related behaviors have received far less attention. In the new research, the team focused on monolayer-protected clusters. These consist of a gold core surrounded by molecules known as ligands. The structure of these clusters can be precisely adjusted, and they can be produced in relatively large amounts.
"These clusters are referred to as super atoms, because their electronic character is like that of an atom, and now we know their spin properties are also similar," Smith said. "We identified 19 distinguishable and unique Rydberg-like spin-polarized states that mimic the super-positions that we could do in the trapped, gas-phase dilute ions. This means the clusters have the key properties needed to carry out spin-based operations."
Tuning Spin Polarization Through Chemical Design
The scientists measured spin polarization in the gold clusters using an approach similar to techniques used for individual atoms. One type of cluster showed 7 percent spin polarization, while another cluster with a different ligand reached nearly 40 percent. Knappenberger noted that this higher value is comparable to that of some leading two-dimensional quantum materials.
"This tells us that the spin properties of the electron are intimately related to the vibrations of the ligands," Knappenberger said. "Traditionally, quantum materials have a fixed value of spin polarization that cannot be significantly changed, but our results suggest we can modify the ligand of these gold clusters to tune this property widely."
The team now plans to investigate how altering specific features within the ligands affects spin polarization and how these changes might be used to fine tune quantum behavior.
"The quantum field is generally dominated by researchers in physics and materials science, and here we see the opportunity for chemists to use our synthesis skills to design materials with tunable results," Knappenberger said. "This is a new frontier in quantum information science."
References:
"Diverse Superatomic Magnetic and Spin Properties of Au144(SC8H9)60 Clusters" by Juniper Foxley, Marcus Tofanelli, Jane A. Knappenberger, Christopher J. Ackerson and Kenneth L. Knappenberger, Jr., 29 May 2025, ACS Central Science.
DOI: 10.1021/acscentsci.5c00139
"The Influence of Passivating Ligand Identity on Au25(SR)18 Spin-Polarized Emission" by Nathanael L. Smith, Patrick J. Herbert, Marcus A. Tofanelli, Jane A. Knappenberger, Christopher J. Ackerson and Kenneth L. Knappenberger, Jr., 15 May 2025, The Journal of Physical Chemistry Letters.
DOI: 10.1021/acs.jpclett.5c00723
In addition to Smith and Knappenberger, the research team includes Juniper Foxley, graduate student in chemistry at Penn State; Patrick Herbert, who earned a doctoral degree in chemistry at Penn State in 2019; Jane Knappenberger, researcher in the Penn State Eberly College of Science; as well as Marcus Tofanelli and Christopher Ackerson at Colorado State
News
Analyzing Darwin’s specimens without opening 200-year-old jars
Scientists have successfully analyzed Charles Darwin's original specimens from his HMS Beagle voyage (1831 to 1836) to the Galapagos Islands. Remarkably, the specimens have been analyzed without opening their 200-year-old preservation jars. Examining 46 [...]
Scientists discover natural ‘brake’ that could stop harmful inflammation
Researchers at University College London (UCL) have uncovered a key mechanism that helps the body switch off inflammation—a breakthrough that could lead to new treatments for chronic diseases affecting millions worldwide. Inflammation is the [...]
A Forgotten Molecule Could Revive Failing Antifungal Drugs and Save Millions of Lives
Scientists have uncovered a way to make existing antifungal drugs work again against deadly, drug-resistant fungi. Fungal infections claim millions of lives worldwide each year, and current medical treatments are failing to keep pace. [...]
Scientists Trap Thyme’s Healing Power in Tiny Capsules
A new micro-encapsulation breakthrough could turn thyme’s powerful health benefits into safer, smarter nanodoses. Thyme extract is often praised for its wide range of health benefits, giving it a reputation as a natural medicinal [...]
Scientists Develop Spray-On Powder That Instantly Seals Life-Threatening Wounds
KAIST scientists have created a fast-acting, stable powder hemostat that stops bleeding in one second and could significantly improve survival in combat and emergency medicine. Severe blood loss remains the primary cause of death from [...]
Oceans Are Struggling To Absorb Carbon As Microplastics Flood Their Waters
New research points to an unexpected way plastic pollution may be influencing Earth’s climate system. A recent study suggests that microscopic plastic pollution is reducing the ocean’s capacity to take in carbon dioxide, a [...]
Molecular Manufacturing: The Future of Nanomedicine – New book from Frank Boehm
This book explores the revolutionary potential of atomically precise manufacturing technologies to transform global healthcare, as well as practically every other sector across society. This forward-thinking volume examines how envisaged Factory@Home systems might enable the cost-effective [...]
New Book! NanoMedical Brain/Cloud Interface – Explorations and Implications
New book from Frank Boehm, NanoappsMedical Inc Founder: This book explores the future hypothetical possibility that the cerebral cortex of the human brain might be seamlessly, safely, and securely connected with the Cloud via [...]
Global Health Care Equivalency in the Age of Nanotechnology, Nanomedicine and Artificial Intelligence
A new book by Frank Boehm, NanoappsMedical Inc. Founder. This groundbreaking volume explores the vision of a Global Health Care Equivalency (GHCE) system powered by artificial intelligence and quantum computing technologies, operating on secure [...]
Miller School Researchers Pioneer Nanovanilloid-Based Brain Cooling for Traumatic Injury
A multidisciplinary team at the University of Miami Miller School of Medicine has developed a breakthrough nanodrug platform that may prove beneficial for rapid, targeted therapeutic hypothermia after traumatic brain injury (TBI). Their work, published in ACS [...]
COVID-19 still claims more than 100,000 US lives each year
Centers for Disease Control and Prevention researchers report national estimates of 43.6 million COVID-19-associated illnesses and 101,300 deaths in the US during October 2022 to September 2023, plus 33.0 million illnesses and 100,800 deaths [...]
Nanomedicine in 2026: Experts Predict the Year Ahead
Progress in nanomedicine is almost as fast as the science is small. Over the last year, we've seen an abundance of headlines covering medical R&D at the nanoscale: polymer-coated nanoparticles targeting ovarian cancer, Albumin recruiting nanoparticles for [...]
Lipid nanoparticles could unlock access for millions of autoimmune patients
Capstan Therapeutics scientists demonstrate that lipid nanoparticles can engineer CAR T cells within the body without laboratory cell manufacturing and ex vivo expansion. The method using targeted lipid nanoparticles (tLNPs) is designed to deliver [...]
The Brain’s Strange Way of Computing Could Explain Consciousness
Consciousness may emerge not from code, but from the way living brains physically compute. Discussions about consciousness often stall between two deeply rooted viewpoints. One is computational functionalism, which holds that cognition can be [...]
First breathing ‘lung-on-chip’ developed using genetically identical cells
Researchers at the Francis Crick Institute and AlveoliX have developed the first human lung-on-chip model using stem cells taken from only one person. These chips simulate breathing motions and lung disease in an individual, [...]
Cell Membranes May Act Like Tiny Power Generators
Living cells may generate electricity through the natural motion of their membranes. These fast electrical signals could play a role in how cells communicate and sense their surroundings. Scientists have proposed a new theoretical [...]















