It has long been known that gold can be used to do things that philosophers have never even dreamed of. The Institute of Nuclear Physics of the Polish Academy of Sciences in Cracow has confirmed the existence of ‘gold glue’: bonds involving gold atoms, capable of permanently bonding protein rings. Skilfully used by an international team of scientists, the bonds have made it possible to construct molecular nanocages with a structure so far unparalleled in nature or even in mathematics (Nature, “An ultra-stable gold-coordinated protein cage displaying reversible assembly”).
The world of science has been interested in molecular cages for years. Not without reason. Chemical molecules, including those that would under normal conditions enter into chemical reactions, can be enclosed within their empty interiors. The particles of the enclosed compound, separated by the walls of the cage from the environment, have nothing to bond with. These cages can be therefore be used, for example, to transport drugs safely into a cancer cell, only releasing the drug when they are inside it.
Molecular cages are polyhedra made up of smaller ‘bricks’, usually protein molecules. The bricks can’t be of any shape. For example, if we wanted to build a molecular polyhedron using only objects with the outline of an equilateral triangle, geometry would limit us to only three solid figures: a tetrahedron, an octahedron or an icosahedron. So far, there have been no other structural possibilities.

Image Credit:  UJ, IFJ PAN

Read more at nanowerk.com.com

News This Week

New Adjustments to Hyperspectral Microscopy of Nanomaterials

Hyperspectral microscopy is an advanced visualization technique that combines hyperspectral imaging with state-of-the-art optics and computer software to enable rapid identification of nanomaterials. Since hyperspectral datacubes are large, their acquisition is complicated and time-consuming. [...]

Through the quantum looking glass

An ultrathin invention could make future computing, sensing and encryption technologies remarkably smaller and more powerful by helping scientists control a strange but useful phenomenon of quantum mechanics, according to new research recently published [...]

A plastic film that can kill viruses using room lights

Graphical abstract. Credit: Journal of Photochemistry and Photobiology B: Biology (2022). DOI: 10.1016/j.jphotobiol.2022.112551 Researchers at Queen's University Belfast have developed a plastic film that can kill viruses that land on its surface with room light. The [...]

Bone formation comes down to the nanowire

Nanotechnology that accelerates the transition of stem cells into bone could advance regenerative medicine. A nanotechnology platform developed by KAUST scientists could lead to new treatments for degenerative bone diseases. The system takes advantage [...]