Social distancing may have roots 6,000 years ago, as research shows Neolithic villages like Nebelivka used clustered layouts to control disease spread.
The phrase "social distancing" became widely recognized in recent years as people worldwide adapted their behavior to combat the COVID pandemic. However, new research led by UT Professor Alex Bentley suggests that the concept of maintaining organized physical distance may trace back roughly 6,000 years.
Bentley, from the Department of Anthropology, published a recent study in the Journal of The Royal Society Interface. His coauthors include Simon Carrignon, a former UT postdoctoral researcher who was a research associate at the Cambridge University's McDonald Institute for Archaeological Research while working on this project.
"New ancient DNA studies have shown that diseases such as salmonella, tuberculosis, and plague emerged in Europe and Central Asia thousands of years ago during the Neolithic Era, which is the time of the first farming villages," said Bentley. "This led us to ask a new question, which is whether Neolithic villagers practiced social distancing to help avoid the spread of these diseases."
Urban Planning Over the Centuries
As computational social scientists, Bentley and Carrignon have published on both ancient adaptive behaviors and the spread of disease in the modern world. This project brought these interests together. They found that the "mega-settlements" of the ancient Trypillia culture in the Black Sea region, circa 4,000 BC, were a perfect place to test their theory that boundaries of personal space have long been integral parts of public health planning.
They focused on a settlement called Nebelivka, in what is now Ukraine, where thousands of wooden homes were regularly spaced in concentric patterns and clustered in neighborhoods.
"This clustered layout is known by epidemiologists to be a good configuration to contain disease outbreaks," said Bentley. "This suggests and helps explain the curious layout of the world's first urban areas—it would have protected residents from emerging diseases of the time. We set out to test how effective it would be through computer modeling."
Carrignon and Bentley adapted models developed in a previous National Science Foundation-funded project at UT. Bentley was co-investigator with research lead Professor Nina Fefferman in this work modeling the effects of social distancing behaviors on the spread of Covid-like pandemics to study what effects these practices—such as reducing interaction between neighborhoods—might have had on prehistoric settlements.
"These new tools can help us understand what the archaeological record is telling us about prehistoric behaviors when new diseases evolved," said Bentley. "The principles are the same—we assumed the earliest prehistoric diseases were foodborne at first, rather than airborne."
Following the Trail
Their current study simulated the spread of foodborne disease, such as ancient salmonella, on the detailed plan of Nebelivka.
They teamed with:
- John Chapman and Bisserka Gaydarska, archaeologists from England's Durham University, who excavated Nebelivka;
- Brian Buchanan, a researcher at Eastern Washington University researcher who did a detailed digital map of the site;
- and Mike O'Brien, a cultural evolution expert from Texas A&M in San Antonio.
They ran the archeological data through millions of simulations to test the effects of different possible disease parameters.
"The results revealed that the pie-shaped clustering of houses at Nebelivka, in distinct neighborhoods, would have reduced the spread of early foodborne diseases," said Bentley. "Fighting disease might also explain why the residents of Nebelivka regularly burned their wooden houses to replace them with new ones. The study shows that neighborhood clustering would have helped survival in early farming villages as new foodborne diseases evolved."
Applications for Today
With their success in modeling from sparse archaeological data, this approach could be applied to contemporary and future situations when disease data are sparse, even for airborne illnesses.
"In the early 2020 days of the Covid epidemic, for example, few US counties were reporting reliable infection statistics," said Bentley. "By running millions of simulations with different parameter values, this approach—known as 'Approximate Bayesian Computation'—can be applied to test different models versus contemporary disease data, such as infection numbers in US counties over time."
The team's mix of ancient solutions and modern applications exemplifies the innovative approaches that Volunteer researchers in the College of Arts and Sciences bring to making lives better for Tennesseans and beyond.
Reference: "Modelling cultural responses to disease spread in Neolithic Trypillia mega-settlements" by R. Alexander Bentley, Simon Carrignon, Bisserka Gaydarska, John Chapman, Brian Buchanan and Michael J. O'Brien, 30 September 2024, Journal of the Royal Society Interface.
DOI: 10.1098/rsif.2024.0313
News
New nanomedicine wipes out leukemia in animal study
In a promising advance for cancer treatment, Northwestern University scientists have re-engineered the molecular structure of a common chemotherapy drug, making it dramatically more soluble and effective and less toxic. In the new study, [...]
Mystery Solved: Scientists Find Cause for Unexplained, Deadly Diseases
A study reveals that a protein called RPA is essential for maintaining chromosome stability by stimulating telomerase. New findings from the University of Wisconsin-Madison suggest that problems with a key protein that helps preserve chromosome stability [...]
Nanotech Blocks Infection and Speed Up Chronic Wound Recovery
A new nanotech-based formulation using quercetin and omega-3 fatty acids shows promise in halting bacterial biofilms and boosting skin cell repair. Scientists have developed a nanotechnology-based treatment to fight bacterial biofilms in wound infections. The [...]
Researchers propose five key questions for effective adoption of AI in clinical practice
While Artificial Intelligence (AI) can be a powerful tool that physicians can use to help diagnose their patients and has great potential to improve accuracy, efficiency and patient safety, it has its drawbacks. It [...]
Advancements and clinical translation of intelligent nanodrugs for breast cancer treatment
A comprehensive review in "Biofunct. Mater." meticulously details the most recent advancements and clinical translation of intelligent nanodrugs for breast cancer treatment. This paper presents an exhaustive overview of subtype-specific nanostrategies, the clinical benefits [...]
It’s Not “All in Your Head”: Scientists Develop Revolutionary Blood Test for Chronic Fatigue Syndrome
A 96% accurate blood test for ME/CFS could transform diagnosis and pave the way for future long COVID detection. Researchers from the University of East Anglia and Oxford Biodynamics have created a highly accurate [...]
How Far Can the Body Go? Scientists Find the Ultimate Limit of Human Endurance
Even the most elite endurance athletes can’t outrun biology. A new study finds that humans hit a metabolic ceiling at about 2.5 times their resting energy burn. When ultra-runners take on races that last [...]
World’s Rivers “Overdosing” on Human Antibiotics, Study Finds
Researchers estimate that approximately 8,500 tons of antibiotics enter river systems each year after passing through the human body and wastewater treatment processes. Rivers spanning millions of kilometers across the globe are contaminated with [...]
Yale Scientists Solve a Century-Old Brain Wave Mystery
Yale scientists traced gamma brain waves to thalamus-cortex interactions. The discovery could reveal how brain rhythms shape perception and disease. For more than a century, scientists have observed rhythmic waves of synchronized neuronal activity [...]
Can introducing peanuts early prevent allergies? Real-world data confirms it helps
New evidence from a large U.S. primary care network shows that early peanut introduction, endorsed in 2015 and 2017 guidelines, was followed by a marked decline in clinician-diagnosed peanut and overall food allergies among [...]
Nanoparticle blueprints reveal path to smarter medicines
Lipid nanoparticles (LNPs) are the delivery vehicles of modern medicine, carrying cancer drugs, gene therapies and vaccines into cells. Until recently, many scientists assumed that all LNPs followed more or less the same blueprint, [...]
How nanomedicine and AI are teaming up to tackle neurodegenerative diseases
When I first realized the scale of the challenge posed by neurodegenerative diseases, such as Alzheimer's, Parkinson's disease and amyotrophic lateral sclerosis (ALS), I felt simultaneously humbled and motivated. These disorders are not caused [...]
Self-Organizing Light Could Transform Computing and Communications
USC engineers have demonstrated a new kind of optical device that lets light organize its own route using the principles of thermodynamics. Instead of relying on switches or digital control, the light finds its own [...]
Groundbreaking New Way of Measuring Blood Pressure Could Save Thousands of Lives
A new method that improves the accuracy of interpreting blood pressure measurements taken at the ankle could be vital for individuals who are unable to have their blood pressure measured on the arm. A newly developed [...]
Scientist tackles key roadblock for AI in drug discovery
The drug development pipeline is a costly and lengthy process. Identifying high-quality "hit" compounds—those with high potency, selectivity, and favorable metabolic properties—at the earliest stages is important for reducing cost and accelerating the path [...]
Nanoplastics with environmental coatings can sneak past the skin’s defenses
Plastic is ubiquitous in the modern world, and it's notorious for taking a long time to completely break down in the environment - if it ever does. But even without breaking down completely, plastic [...]















