Scientists have been continually working on creating novel drug delivery systems with increased efficacy and safety. Recently, a new nano-drug delivery system (NDDS) was established based on bio-graphene nanocomposite to treat cervical cancer. This study is available in ACS Applied Bio Materials.
Treatment of Cancer and Nanotechnology
The World Health Organization has recently stated that cancer is one of the prime causes of human death. This disease is associated with uncontrolled cell growth in the body that results in tumors that affects the immune system. Scientists have constantly worked on developing means for the early diagnosis, discovering effective treatments and preventive measures to protect individuals from cancer.
Cervical cancer causes a large number of deaths in women. Due to the lack of awareness, most affected women visit healthcare facilities in their later stages of the disease. Scientists have developed various NDDS, which have been highly effective for cancer treatment. These nano-based systems preserve the drug from metabolic degradation, prolong its circulation lifetime, improve targeted delivery, control release, and lower post-treatment side effects.
Clinicians use cisplatin (cis-diamminedichloroplatinum II, (CDDP)), a platinum-based chemotherapeutic anticancer drug, to treat different types of cancer including cervical, bladder, and ovarian cancers. Although CDDP is highly effective against cancer, it has some serious disadvantages, i.e., it might cause cardiotoxicity, ototoxicity, nephrotoxicity, and peripheral neuropathy. Therefore, there is a need to develop novel NDDS, which can minimize the adverse effects of CDDP and improve its anticancer efficacy.
Graphene and Drug Delivery
Graphene nanoparticles have been widely used in various nanobiotechnological applications, including biomedicine. Scientists have stated that graphene oxide (GO)-based nanomaterial is a viable candidate for controlled drug delivery. Owing to its extraordinary drug loading capacity, outstanding physiochemical properties, strong colloidal stability, and rapid cellular absorption, GO nanomaterials have been applied to improve current chemotherapies.
Several studies have shown that GO-based materials cause DNA damage and reproductive damage, generate reactive oxygen species (ROS), and induce programmed cell death. GO-based nanomaterials are also reported to be genotoxic in human keratinocytes. Scientists have incorporated different molecules, such as poly(ethylene glycol) (PEG), chitosan, poly- (lactic acid) (PLA), and polyvinylpyrrolidone (PVP), to modify the functionality of GO to increase its biomedical applications.
Researchers have developed carbohydrate polymer chitosan (CS) that exhibits many bio-functionalities and an impressive safety profile. CS has shown excellent biocompatibility, biodegradability using chitinases, and low toxicity. Although CS has many advantages, it also comes with several limitations, including poor mechanical properties and solubility in acidic solutions. These drawbacks have been overcome by utilizing graphene-based composite materials.
Bio Graphene-Based Nanocomposite Material for Drug Delivery in Cancer Therapy
Recently, researchers have used graphene-based composite materials, which possess superior mechanical properties, and are resistant to acidic environments. In this study, scientists developed CDDP@CS-GO-based efficient NDDS. This platform has enhanced the efficacy of the loaded drug and has exhibited appreciable stability, sustained drug release, pH response, and dispersibility.
Scientists reported that the GO nanosheet was covalently bonded with chitosan, which reduced the toxicity of GO and improved the efficacy of drug loading. The efficiency of CS-GO NCs in loading CDDP was determined by inductively coupled plasma mass spectrometry (ICP-MS). Scientists observed that the functionalization of CS and the loading of CDDP on the surface of GO nanosheet decreased the protein adsorption, making it a viable candidate for drug carriers.
Researchers evaluated the cell proliferation activity of CS-GO, free CDDP, and CDDP@CS-GO NCs, using the MTT assay in human epithelial adenocarcinoma cells (HeLa) cells. They observed that cells exhibited morphological changes, i.e., rounding and shrinking, in the presence of CDDP@CS-GO NCs. In this study, scientists performed cell viability assays and utilized confocal laser scanning microscopic (CLSM) to confirm the uptake properties of the CDDP@CS-GO NCs and cellular localization. Scientists observed that CDDP@CS-GO NCs are pH sensitive and, hence, can be used for controlled release of the drug.
The present study reported that CDDP internalization was enhanced in cells treated with CDDP@CSGO NCs compared to those without CDDP. This implies that CS-GO serves as an effective drug carrier that can improve the intracellular concentration of CDDP, compared to the CDDP-free cells.
Scientists determined the apoptosis rate by CDDP-free and the CDDP-loaded CS-GO NCs, observing a higher apoptotic population in CDDP@CS-GO NC-treated cells than CDDP-free cells. This might be because of the increased internalization of CDDP@CS-GO NC, which induced apoptosis more effectively than the CDDP-free cells.
Concluding Remarks
Researchers reported that the newly synthesized CDDP@CS-GO nanocomposite could efficiently target HeLa cells through a nonspecific endocytosis mechanism. After reaching the target site, the anticancer drug gets released in the acidic pH environment. The authors believe that CDDP@CS-GO NC-based nanotherapeutic biomaterials could be utilized for various biomedical applications, including treating different types of cancers.

News
Does Space-Time Really Exist?
Is time something that flows — or just an illusion? Exploring space-time as either a fixed “block universe” or a dynamic fabric reveals deeper mysteries about existence, change, and the very nature of reality. [...]
Unlocking hidden soil microbes for new antibiotics
Most bacteria cannot be cultured in the lab-and that's been bad news for medicine. Many of our frontline antibiotics originated from microbes, yet as antibiotic resistance spreads and drug pipelines run dry, the soil [...]
By working together, cells can extend their senses beyond their direct environment
The story of the princess and the pea evokes an image of a highly sensitive young royal woman so refined, she can sense a pea under a stack of mattresses. When it comes to [...]
Overworked Brain Cells May Hold the Key to Parkinson’s
Scientists at Gladstone Institutes uncovered a surprising reason why dopamine-producing neurons, crucial for smooth body movements, die in Parkinson’s disease. In mice, when these neurons were kept overactive for weeks, they began to falter, [...]
Old tires find new life: Rubber particles strengthen superhydrophobic coatings against corrosion
Development of highly robust superhydrophobic anti-corrosion coating using recycled tire rubber particles. Superhydrophobic materials offer a strategy for developing marine anti-corrosion materials due to their low solid-liquid contact area and low surface energy. However, [...]
This implant could soon allow you to read minds
Mind reading: Long a science fiction fantasy, today an increasingly concrete scientific goal. Researchers at Stanford University have succeeded in decoding internal language in real time thanks to a brain implant and artificial intelligence. [...]
A New Weapon Against Cancer: Cold Plasma Destroys Hidden Tumor Cells
Cold plasma penetrates deep into tumors and attacks cancer cells. Short-lived molecules were identified as key drivers. Scientists at the Leibniz Institute for Plasma Science and Technology (INP), working with colleagues from Greifswald University Hospital and [...]
This Common Sleep Aid May Also Protect Your Brain From Alzheimer’s
Lemborexant and similar sleep medications show potential for treating tau-related disorders, including Alzheimer’s disease. New research from Washington University School of Medicine in St. Louis shows that a commonly used sleep medication can restore normal sleep patterns and [...]
Sugar-Coated Nanoparticles Boost Cancer Drug Efficacy
A team of researchers at the University of Mississippi has discovered that coating cancer treatment carrying nanoparticles in a sugar-like material increases their treatment efficacy. They reported their findings in Advanced Healthcare Materials. Over a tenth of breast [...]
Nanoparticle-Based Vaccine Shows Promise in Fighting Cancer
In a study published in OncoImmunology, researchers from the German Cancer Research Center and Heidelberg University have created a therapeutic vaccine that mobilizes the immune system to target cancer cells. The researchers demonstrated that virus peptides combined [...]
Quantitative imaging method reveals how cells rapidly sort and transport lipids
Lipids are difficult to detect with light microscopy. Using a new chemical labeling strategy, a Dresden-based team led by André Nadler at the Max Planck Institute of Molecular Cell Biology and Genetics (MPI-CBG) and [...]
Ancient DNA reveals cause of world’s first recorded pandemic
Scientists have confirmed that the Justinian Plague, the world’s first recorded pandemic, was caused by Yersinia pestis, the same bacterium behind the Black Death. Dating back some 1,500 years and long described in historical texts but [...]
“AI Is Not Intelligent at All” – Expert Warns of Worldwide Threat to Human Dignity
Opaque AI systems risk undermining human rights and dignity. Global cooperation is needed to ensure protection. The rise of artificial intelligence (AI) has changed how people interact, but it also poses a global risk to human [...]
Nanomotors: Where Are They Now?
First introduced in 2004, nanomotors have steadily advanced from a scientific curiosity to a practical technology with wide-ranging applications. This article explores the key developments, recent innovations, and major uses of nanomotors today. A [...]
Study Finds 95% of Tested Beers Contain Toxic “Forever Chemicals”
Researchers found PFAS in 95% of tested beers, with the highest levels linked to contaminated local water sources. Per- and polyfluoroalkyl substances (PFAS), better known as forever chemicals, are gaining notoriety for their ability [...]
Long COVID Symptoms Are Closer To A Stroke Or Parkinson’s Disease Than Fatigue
When most people get sick with COVID-19 today, they think of it as a brief illness, similar to a cold. However, for a large number of people, the illness doesn't end there. The World [...]