Scientists have been continually working on creating novel drug delivery systems with increased efficacy and safety. Recently, a new nano-drug delivery system (NDDS) was established based on bio-graphene nanocomposite to treat cervical cancer. This study is available in ACS Applied Bio Materials.
Treatment of Cancer and Nanotechnology
The World Health Organization has recently stated that cancer is one of the prime causes of human death. This disease is associated with uncontrolled cell growth in the body that results in tumors that affects the immune system. Scientists have constantly worked on developing means for the early diagnosis, discovering effective treatments and preventive measures to protect individuals from cancer.
Cervical cancer causes a large number of deaths in women. Due to the lack of awareness, most affected women visit healthcare facilities in their later stages of the disease. Scientists have developed various NDDS, which have been highly effective for cancer treatment. These nano-based systems preserve the drug from metabolic degradation, prolong its circulation lifetime, improve targeted delivery, control release, and lower post-treatment side effects.
Clinicians use cisplatin (cis-diamminedichloroplatinum II, (CDDP)), a platinum-based chemotherapeutic anticancer drug, to treat different types of cancer including cervical, bladder, and ovarian cancers. Although CDDP is highly effective against cancer, it has some serious disadvantages, i.e., it might cause cardiotoxicity, ototoxicity, nephrotoxicity, and peripheral neuropathy. Therefore, there is a need to develop novel NDDS, which can minimize the adverse effects of CDDP and improve its anticancer efficacy.
Graphene and Drug Delivery
Graphene nanoparticles have been widely used in various nanobiotechnological applications, including biomedicine. Scientists have stated that graphene oxide (GO)-based nanomaterial is a viable candidate for controlled drug delivery. Owing to its extraordinary drug loading capacity, outstanding physiochemical properties, strong colloidal stability, and rapid cellular absorption, GO nanomaterials have been applied to improve current chemotherapies.
Several studies have shown that GO-based materials cause DNA damage and reproductive damage, generate reactive oxygen species (ROS), and induce programmed cell death. GO-based nanomaterials are also reported to be genotoxic in human keratinocytes. Scientists have incorporated different molecules, such as poly(ethylene glycol) (PEG), chitosan, poly- (lactic acid) (PLA), and polyvinylpyrrolidone (PVP), to modify the functionality of GO to increase its biomedical applications.
Researchers have developed carbohydrate polymer chitosan (CS) that exhibits many bio-functionalities and an impressive safety profile. CS has shown excellent biocompatibility, biodegradability using chitinases, and low toxicity. Although CS has many advantages, it also comes with several limitations, including poor mechanical properties and solubility in acidic solutions. These drawbacks have been overcome by utilizing graphene-based composite materials.
Bio Graphene-Based Nanocomposite Material for Drug Delivery in Cancer Therapy
Recently, researchers have used graphene-based composite materials, which possess superior mechanical properties, and are resistant to acidic environments. In this study, scientists developed CDDP@CS-GO-based efficient NDDS. This platform has enhanced the efficacy of the loaded drug and has exhibited appreciable stability, sustained drug release, pH response, and dispersibility.
Scientists reported that the GO nanosheet was covalently bonded with chitosan, which reduced the toxicity of GO and improved the efficacy of drug loading. The efficiency of CS-GO NCs in loading CDDP was determined by inductively coupled plasma mass spectrometry (ICP-MS). Scientists observed that the functionalization of CS and the loading of CDDP on the surface of GO nanosheet decreased the protein adsorption, making it a viable candidate for drug carriers.
Researchers evaluated the cell proliferation activity of CS-GO, free CDDP, and CDDP@CS-GO NCs, using the MTT assay in human epithelial adenocarcinoma cells (HeLa) cells. They observed that cells exhibited morphological changes, i.e., rounding and shrinking, in the presence of CDDP@CS-GO NCs. In this study, scientists performed cell viability assays and utilized confocal laser scanning microscopic (CLSM) to confirm the uptake properties of the CDDP@CS-GO NCs and cellular localization. Scientists observed that CDDP@CS-GO NCs are pH sensitive and, hence, can be used for controlled release of the drug.
The present study reported that CDDP internalization was enhanced in cells treated with CDDP@CSGO NCs compared to those without CDDP. This implies that CS-GO serves as an effective drug carrier that can improve the intracellular concentration of CDDP, compared to the CDDP-free cells.
Scientists determined the apoptosis rate by CDDP-free and the CDDP-loaded CS-GO NCs, observing a higher apoptotic population in CDDP@CS-GO NC-treated cells than CDDP-free cells. This might be because of the increased internalization of CDDP@CS-GO NC, which induced apoptosis more effectively than the CDDP-free cells.
Concluding Remarks
Researchers reported that the newly synthesized CDDP@CS-GO nanocomposite could efficiently target HeLa cells through a nonspecific endocytosis mechanism. After reaching the target site, the anticancer drug gets released in the acidic pH environment. The authors believe that CDDP@CS-GO NC-based nanotherapeutic biomaterials could be utilized for various biomedical applications, including treating different types of cancers.
News
AI Is Overheating. This New Technology Could Be the Fix
Engineers have developed a passive evaporative cooling membrane that dramatically improves heat removal for electronics and data centers Engineers at the University of California San Diego have created an innovative cooling system designed to greatly enhance [...]
New nanomedicine wipes out leukemia in animal study
In a promising advance for cancer treatment, Northwestern University scientists have re-engineered the molecular structure of a common chemotherapy drug, making it dramatically more soluble and effective and less toxic. In the new study, [...]
Mystery Solved: Scientists Find Cause for Unexplained, Deadly Diseases
A study reveals that a protein called RPA is essential for maintaining chromosome stability by stimulating telomerase. New findings from the University of Wisconsin-Madison suggest that problems with a key protein that helps preserve chromosome stability [...]
Nanotech Blocks Infection and Speed Up Chronic Wound Recovery
A new nanotech-based formulation using quercetin and omega-3 fatty acids shows promise in halting bacterial biofilms and boosting skin cell repair. Scientists have developed a nanotechnology-based treatment to fight bacterial biofilms in wound infections. The [...]
Researchers propose five key questions for effective adoption of AI in clinical practice
While Artificial Intelligence (AI) can be a powerful tool that physicians can use to help diagnose their patients and has great potential to improve accuracy, efficiency and patient safety, it has its drawbacks. It [...]
Advancements and clinical translation of intelligent nanodrugs for breast cancer treatment
A comprehensive review in "Biofunct. Mater." meticulously details the most recent advancements and clinical translation of intelligent nanodrugs for breast cancer treatment. This paper presents an exhaustive overview of subtype-specific nanostrategies, the clinical benefits [...]
It’s Not “All in Your Head”: Scientists Develop Revolutionary Blood Test for Chronic Fatigue Syndrome
A 96% accurate blood test for ME/CFS could transform diagnosis and pave the way for future long COVID detection. Researchers from the University of East Anglia and Oxford Biodynamics have created a highly accurate [...]
How Far Can the Body Go? Scientists Find the Ultimate Limit of Human Endurance
Even the most elite endurance athletes can’t outrun biology. A new study finds that humans hit a metabolic ceiling at about 2.5 times their resting energy burn. When ultra-runners take on races that last [...]
World’s Rivers “Overdosing” on Human Antibiotics, Study Finds
Researchers estimate that approximately 8,500 tons of antibiotics enter river systems each year after passing through the human body and wastewater treatment processes. Rivers spanning millions of kilometers across the globe are contaminated with [...]
Yale Scientists Solve a Century-Old Brain Wave Mystery
Yale scientists traced gamma brain waves to thalamus-cortex interactions. The discovery could reveal how brain rhythms shape perception and disease. For more than a century, scientists have observed rhythmic waves of synchronized neuronal activity [...]
Can introducing peanuts early prevent allergies? Real-world data confirms it helps
New evidence from a large U.S. primary care network shows that early peanut introduction, endorsed in 2015 and 2017 guidelines, was followed by a marked decline in clinician-diagnosed peanut and overall food allergies among [...]
Nanoparticle blueprints reveal path to smarter medicines
Lipid nanoparticles (LNPs) are the delivery vehicles of modern medicine, carrying cancer drugs, gene therapies and vaccines into cells. Until recently, many scientists assumed that all LNPs followed more or less the same blueprint, [...]
How nanomedicine and AI are teaming up to tackle neurodegenerative diseases
When I first realized the scale of the challenge posed by neurodegenerative diseases, such as Alzheimer's, Parkinson's disease and amyotrophic lateral sclerosis (ALS), I felt simultaneously humbled and motivated. These disorders are not caused [...]
Self-Organizing Light Could Transform Computing and Communications
USC engineers have demonstrated a new kind of optical device that lets light organize its own route using the principles of thermodynamics. Instead of relying on switches or digital control, the light finds its own [...]
Groundbreaking New Way of Measuring Blood Pressure Could Save Thousands of Lives
A new method that improves the accuracy of interpreting blood pressure measurements taken at the ankle could be vital for individuals who are unable to have their blood pressure measured on the arm. A newly developed [...]
Scientist tackles key roadblock for AI in drug discovery
The drug development pipeline is a costly and lengthy process. Identifying high-quality "hit" compounds—those with high potency, selectivity, and favorable metabolic properties—at the earliest stages is important for reducing cost and accelerating the path [...]















