Researchers at the Nanoscience Center and Faculty of Information Technology in the University of Jyväskylä, Finland, have achieved a significant step forward in predicting atomic structures of hybrid nanoparticles. | |
A research article published in Nature Communications (“A Method for Structure-Prediction of Metal-Ligand Interfaces of Hybrid Nanoparticles”), demonstrates a new algorithm that ”learns” to predict binding sites of molecules at the metal-molecule interface of hybrid nanoparticles by using already published experimental structural information on nanoparticle reference systems. | |
The algorithm can in principle be applied to any nanometre-size structure consisting of metals and molecules provided that some structural information already exists on the corresponding systems |
Nanometre-sized hybrid metal nanoparticles have many applications in different processes, including catalysis, nanoelectronics, nanomedicine and biological imaging. Often it is important to know the detailed atomic structure of the particle in order to understand its functionality. The particles consist of a metal core and a protecting layer of molecules. | |
High-resolution electron microscopes are able to produce 3D atomic structures of the metal core, but these instruments cannot detect the molecular layer that consists of light atoms such as carbon, nitrogen and oxygen. | |
The new algorithm published by the researchers in Jyväskylä helps to create accurate atomic models of the particles’ total structure enabling simulations of the metal-molecule interface as well as of the surface of the molecular layer and its interactions with the environment. | |
The algorithm can also rank the predicted atomic structural models based on how well the models reproduce measured properties of other particles of similar size and type. | |
”The basic idea behind our algorithm is very simple. Chemical bonds between atoms are always discrete, having well-defined bond angles and bond distances. Therefore, every nanoparticle structure known from experiments, where the positions of all atoms are resolved accurately, tells something essential about the chemistry of the metal-molecule interface. |
Image Credit: Sami Malola, University of Jyväskylä

News This Week
Platelet-Rich Plasma Applications for Achilles Tendon Repair: A Bridge between Biology and Surgery
Frank Boehm (Nanoapps Medical Inc. Founder) has contributed to 'Platelet-Rich Plasma Applications for Achilles Tendon Repair: A Bridge between Biology and Surgery', published by International Journal of Molecular Sciences/ MDP. Abstract: Achilles tendon ruptures [...]
SARS_CoV_2 Can Infect Neurons and Damage Brain Tissue
Using both mouse and human brain tissue, researchers at Yale School of Medicine have discovered that SARS-CoV-2 can directly infect the central nervous system and have begun to unravel some of the virus’s effects on [...]
MIT algorithm discovers antibiotic that can fight drug-resistant diseases
A deep learning algorithm developed at MIT has discovered new antibiotics that can treat drug-resistant diseases by killing 35 powerful bacteria. The pathogens that the halicin antibiotic has targetted include Acinetobacter baumannii, which was nicknamed [...]
Article: ‘Digital Rights in the Age of Super Intelligence’ by Eva Kaili
In our transforming world, digital technology has the critical mass to push our frontiers and release unlimited potential. As the wave of digital transformation soars high, improving our lives, industries and economies, we must not [...]
Scientists Discover a Way to Control the Immune System’s “Natural Killer” Cells With “Invisible” Stem Cells
UC San Francisco scientists have discovered a new way to control the immune system’s “natural killer” (NK) cells, a finding with implications for novel cell therapies and tissue implants that can evade immune rejection. The [...]
Simulations Reveal Nature’s Design For Error Correction During DNA Replication
A team led by scientists at Georgia State University simulates the precise transition between the processes of DNA synthesis and proofreading DNA replication is one of the most important processes in biology, responsible for ensuring [...]
‘Long Covid’ is anything but a mild illness
With the excitement of the Covid vaccine’s arrival, it may be easy to forget and ignore those of us with “long Covid”, who are struggling to reclaim our previous, pre-viral lives and continue to live [...]
Could COVID-19 have wiped out the Neandertals?
Everybody loves Neandertals, those big-brained brutes we supposedly outcompeted and ultimately replaced using our sharp tongues and quick, delicate minds. But did we really, though? Is it mathematically possible that we could yet be them, [...]
Inside Oxford’s coronavirus vaccine development
From a small discovery to producing at scale, photojournalist David Levene documents the groundbreaking work of the scientists of Oxford University during the development of a vaccine which is now poised for approval by medicines regulators. [...]
From molecule to medicine via machine learning
t typically takes many years of experiments to develop a new medicine. Although vaccines to protect against disease from the novel coronavirus are starting to reach clinics around the world, patients and doctors will still [...]
First Optical Tweezers Capable of Trapping Nanoparticles
Optical tweezers are a rapidly growing technology, and have opened up a wide variety of research applications in recent years. The devices operate by trapping particles at the focal points of tightly focused laser beams, [...]
Brain Implants Enable Man to Simultaneously Control Two Prosthetic Limbs with ‘Thoughts’
In what is believed to be a medical first, researchers from Johns Hopkins Medicine (JHM) and the Johns Hopkins University Applied Physics Laboratory (APL) have enabled a quadriplegic man to control a pair of prosthetic [...]
How to use antibodies to control chemical reactions
Antibodies are remarkable biomarkers: they are the cues that provide us with indications about many diseases and how our immune system counter them. Now a group of scientists from the University of Rome, Tor Vergata [...]
How COVID-19 Reaches the Brain
Using post-mortem tissue samples, a team of researchers from Charité – Universitätsmedizin Berlin have studied the mechanisms by which the novel coronavirus can reach the brains of patients with COVID-19, and how the immune system [...]
Medicine-carriers made from human cells can cure lung infections
Scientists used human white blood cell membranes to carry two drugs, an antibiotic and an anti-inflammatory, directly to infected lungs in mice. The nano-sized drug delivery method developed at Washington State University successfully treated both [...]
Quantum nanodiamonds may help detect disease earlier
The quantum sensing abilities of nanodiamonds can be used to improve the sensitivity of paper-based diagnostic tests, potentially allowing for earlier detection of diseases such as HIV, according to a study led by UCL researchers [...]