Summary: Researchers have developed an AI-powered tool called chronODE that models how genes turn on and off during brain development. By combining mathematics, machine learning, and genomic data, the method identifies exact “switching points” that determine when genes reach maximum activity.
These findings reveal that most genes follow predictable activation patterns and can be classified into subtypes such as accelerators, switchers, and decelerators. The approach could eventually allow doctors to time gene therapies or drug interventions at the most effective moment.
Key Facts
- chronODE Tool: Uses math and AI to model real-time gene activation and chromatin changes.
- Switching Points: Identifies critical moments when intervention could alter disease progression.
- Gene Patterns: Reveals predictable categories of gene behavior during development.
Source: Yale
A Yale research team has created a new computer tool that can pinpoint when exactly genes turn on and off over time during brain development — a finding that may one day help doctors identify the optimal window to deploy gene therapy treatments.
Dubbed “chronODE,” the tool uses math and machine learning to model how gene activity and chromatin (the DNA and protein mix that forms chromosomes) patterns change over time. The tool may offer a variety of applications in disease modeling and basic genomic research and perhaps lead to future therapeutic uses.
“Basically, we have an equation that can determine the precise moment of gene activation, which may dictate important steps such as the transition from one developmental or disease stage to another,” said Mor Frank, a postdoctoral associate in the Department of Biophysics and Biochemistry in Yale’s Faculty of Arts and Sciences (FAS) and study co-author.
“Consequently, this may represent a potential way to identify, in the future, critical points for therapeutic intervention.”
Results of the study were published August 19 in the journal Nature Communications.
For the study, the research team wanted to determine not just when genes activate, but how their activation changes over the course of brain development. Genes activate at different points in cell development, but mapping gene development has been difficult. And past studies have focused on isolated moments in time, not on how gene expression evolves over time.
In this case, the researchers used a logistic equation (a mathematical equation useful for modeling dynamic processes) to measure when and how rapidly genes turn on and off in developing mouse brains.
They found that most genes follow simple and gradual activation patterns, and that genes can be grouped into subtypes, including accelerators that speed up during late stages of development; switchers that speed up and then slow down; and decelerators that just slow down.
Researchers then developed an AI model to predict gene expression over time based on changes in nearby chromatin. The model worked well, especially for genes with a more complex regulation, and the entire procedure established the chronODE method.
They found that most genes follow predictable developmental patterns, which are dictated by their role in a cell and determine how quickly they reach maximum influence on the cell.
“In a situation where you’re treating genetic disease, you’d want to shut down the gene before it reaches its full potential, after which it’s too late,” said co-author Beatrice Borsari, who is also a postdoctoral associate in biophysics and biochemistry.
“Our equation will tell you exactly the switching point — or the point of no return after which the drug will not have the same effect on the gene’s expression,” Borsari said.
“There are many cases where it’s not just important to characterize the developmental direction you go, but also how fast you reach a certain point, and that’s what this model is allowing us to do for the first time,” added Mark Gerstein, the Albert L. Williams Professor of Biomedical Informatics at Yale School of Medicine and a professor of molecular biophysics and biochemistry, computer science, and of statistics and data science in FAS, and the study’s lead author.
Borsari and Frank underscore that the potential applications in the pharmacokinetic area are major.
Researchers called their new method “chronODE,” a name that merges the concept of time (Chronos is the god of time in Greek mythology) with the mathematical framework of ordinary differential equations (ODEs.)
“We analyze time-series biological data using the logistic ODE,” Borsari said. “In a sense, the name captures the multidisciplinary nature of our research. We work where biology meets the beauty of math. We use mathematical models to describe and predict complex biological phenomena — in our case, temporal patterns in genomic data.”
Borsari is a computational biologist with expertise in genetics and bioinformatics, while Frank is a biomedical engineer with a strong foundation in machine learning and mathematics. “Our diverse skills create a highly synergistic collaboration, and we learn a lot from each other,” Borsari said.
Other study authors include research associates Eve S. Wattenberg, Ke Xu, Susanna X. Liu, and Xuezhu Yu.

News
Breakthrough Blood Test Detects Head and Neck Cancer up to 10 Years Before Symptoms
Mass General Brigham’s HPV-DeepSeek test enables much earlier cancer detection through a blood sample, creating a new opportunity for screening HPV-related head and neck cancers. Human papillomavirus (HPV) is responsible for about 70% of [...]
Study of 86 chikungunya outbreaks reveals unpredictability in size and severity
The symptoms come on quickly—acute fever, followed by debilitating joint pain that can last for months. Though rarely fatal, the chikungunya virus, a mosquito-borne illness, can be particularly severe for high-risk individuals, including newborns and older [...]
Tiny Fat Messengers May Link Obesity to Alzheimer’s Plaque Buildup
Summary: A groundbreaking study reveals how obesity may drive Alzheimer’s disease through tiny messengers called extracellular vesicles released from fat tissue. These vesicles carry lipids that alter how quickly amyloid-β plaques form, a hallmark of [...]
Ozone exposure weakens lung function and reshapes the oral microbiome
Scientists reveal that short-term ozone inhalation doesn’t just harm the lungs; it reshapes the microbes in your mouth, with men facing the greatest risks. Ozone is a toxic environmental pollutant with wide-ranging effects on [...]
New study reveals molecular basis of Long COVID brain fog
Even though many years have passed since the start of the COVID-19 pandemic, the effects of infection with SARS-CoV-2 are not completely understood. This is especially true for Long COVID, a chronic condition that [...]
Scientists make huge Parkinson’s breakthrough as they discover ‘protein trigger’
Scientists have, for the first time, directly visualised the protein clusters in the brain believed to trigger Parkinson's disease, bringing them one step closer to potential treatments. Parkinson's is a progressive incurable neurological disorder [...]
Alpha amino acids’ stability may explain their role as early life’s protein building blocks
A new study from the Hebrew University of Jerusalem published in the Proceedings of the National Academy of Sciences sheds light on one of life's greatest mysteries: why biology is based on a very specific set [...]
3D bioprinting advances enable creation of artificial blood vessels with layered structures
To explore possible treatments for various diseases, either animal models or human cell cultures are usually used first; however, animal models do not always mimic human diseases well, and cultures are far removed [...]
Drinking less water daily spikes your stress hormone
Researchers discovered that people who don’t drink enough water react with sharper cortisol spikes during stressful events, explaining why poor hydration is tied to long-term health risks. A recent study in the Journal of Applied [...]
Nanomed Trials Surge Highlighting Need for Standardization
Researchers have identified over 4,000 nanomedical clinical trials in progress now, highlighting rapid growth in the field and the need for a standardized lexicon to support clinical translation and collaboration. Nanotechnology is the science of [...]
Review: How Could Microalgal Nanoparticles Treat Cancer?
A new approach for cancer treatment involves the use of microalgal-derived nanoparticles. A recent review in Frontiers in Bioengineering and Biotechnology examines their potential as a sustainable and biocompatible solution. Promise and Limitations Nanoparticles (NPs), defined as [...]
COVID-19 models suggest universal vaccination may avert over 100,000 hospitalizations
US Scenario Modeling Hub, a collaborative modeling effort of 17 academic research institutions, reports a universal COVID-19 vaccination recommendation could avert thousands more US hospitalizations and deaths than a high-risk-only strategy. COVID-19 remains a [...]
Climate change fuels spread of neurological virus in Europe
Growing numbers of West Nile virus infection cases, fueled by climate change, are sparking fears among citizens and healthcare providers in Europe. A Clinical Insight in the European Journal of Internal Medicine, published by Elsevier, [...]
Pioneering the next-generation nanoparticle drug delivery system
Researchers report a materials breakthrough enabling a new wave of nanodrug applications, from delivery to diagnostics and gene editing, with global impact. (Nanowerk News) An Australian research team has achieved an advanced materials breakthrough [...]
New Eye Drops Sharpen Aging Eyes in Just One Hour
Imagine tossing aside your reading glasses and regaining crisp, youthful vision with just a few drops a day. New research suggests that specially formulated eye drops can significantly improve near vision in people with [...]
Scientists Use Electricity To “Reprogram” the Immune System for Faster Healing
Researchers from Trinity College Dublin have discovered that electrically stimulating 'macrophages' – one of the immune system's key players – can 'reprogramme' them in such a way to reduce inflammation and encourage faster, more [...]