Summary: Researchers have developed an AI-powered tool called chronODE that models how genes turn on and off during brain development. By combining mathematics, machine learning, and genomic data, the method identifies exact “switching points” that determine when genes reach maximum activity.
These findings reveal that most genes follow predictable activation patterns and can be classified into subtypes such as accelerators, switchers, and decelerators. The approach could eventually allow doctors to time gene therapies or drug interventions at the most effective moment.
Key Facts
- chronODE Tool: Uses math and AI to model real-time gene activation and chromatin changes.
- Switching Points: Identifies critical moments when intervention could alter disease progression.
- Gene Patterns: Reveals predictable categories of gene behavior during development.
Source: Yale
A Yale research team has created a new computer tool that can pinpoint when exactly genes turn on and off over time during brain development — a finding that may one day help doctors identify the optimal window to deploy gene therapy treatments.
Dubbed “chronODE,” the tool uses math and machine learning to model how gene activity and chromatin (the DNA and protein mix that forms chromosomes) patterns change over time. The tool may offer a variety of applications in disease modeling and basic genomic research and perhaps lead to future therapeutic uses.
“Basically, we have an equation that can determine the precise moment of gene activation, which may dictate important steps such as the transition from one developmental or disease stage to another,” said Mor Frank, a postdoctoral associate in the Department of Biophysics and Biochemistry in Yale’s Faculty of Arts and Sciences (FAS) and study co-author.
“Consequently, this may represent a potential way to identify, in the future, critical points for therapeutic intervention.”
Results of the study were published August 19 in the journal Nature Communications.
For the study, the research team wanted to determine not just when genes activate, but how their activation changes over the course of brain development. Genes activate at different points in cell development, but mapping gene development has been difficult. And past studies have focused on isolated moments in time, not on how gene expression evolves over time.
In this case, the researchers used a logistic equation (a mathematical equation useful for modeling dynamic processes) to measure when and how rapidly genes turn on and off in developing mouse brains.
They found that most genes follow simple and gradual activation patterns, and that genes can be grouped into subtypes, including accelerators that speed up during late stages of development; switchers that speed up and then slow down; and decelerators that just slow down.
Researchers then developed an AI model to predict gene expression over time based on changes in nearby chromatin. The model worked well, especially for genes with a more complex regulation, and the entire procedure established the chronODE method.
They found that most genes follow predictable developmental patterns, which are dictated by their role in a cell and determine how quickly they reach maximum influence on the cell.
“In a situation where you’re treating genetic disease, you’d want to shut down the gene before it reaches its full potential, after which it’s too late,” said co-author Beatrice Borsari, who is also a postdoctoral associate in biophysics and biochemistry.
“Our equation will tell you exactly the switching point — or the point of no return after which the drug will not have the same effect on the gene’s expression,” Borsari said.
“There are many cases where it’s not just important to characterize the developmental direction you go, but also how fast you reach a certain point, and that’s what this model is allowing us to do for the first time,” added Mark Gerstein, the Albert L. Williams Professor of Biomedical Informatics at Yale School of Medicine and a professor of molecular biophysics and biochemistry, computer science, and of statistics and data science in FAS, and the study’s lead author.
Borsari and Frank underscore that the potential applications in the pharmacokinetic area are major.
Researchers called their new method “chronODE,” a name that merges the concept of time (Chronos is the god of time in Greek mythology) with the mathematical framework of ordinary differential equations (ODEs.)
“We analyze time-series biological data using the logistic ODE,” Borsari said. “In a sense, the name captures the multidisciplinary nature of our research. We work where biology meets the beauty of math. We use mathematical models to describe and predict complex biological phenomena — in our case, temporal patterns in genomic data.”
Borsari is a computational biologist with expertise in genetics and bioinformatics, while Frank is a biomedical engineer with a strong foundation in machine learning and mathematics. “Our diverse skills create a highly synergistic collaboration, and we learn a lot from each other,” Borsari said.
Other study authors include research associates Eve S. Wattenberg, Ke Xu, Susanna X. Liu, and Xuezhu Yu.
News
This Simple Brain Exercise May Protect Against Dementia for 20 Years
A long-running study following thousands of older adults suggests that a relatively brief period of targeted brain training may have effects that last decades. Starting in the late 1990s, close to 3,000 older adults [...]
Scientists Crack a 50-Year Tissue Mystery With Major Cancer Implications
Researchers have resolved a 50-year-old scientific mystery by identifying the molecular mechanism that allows tissues to regenerate after severe damage. The discovery could help guide future treatments aimed at reducing the risk of cancer [...]
This New Blood Test Can Detect Cancer Before Tumors Appear
A new CRISPR-powered light sensor can detect the faintest whispers of cancer in a single drop of blood. Scientists have created an advanced light-based sensor capable of identifying extremely small amounts of cancer biomarkers [...]
Blindness Breakthrough? This Snail Regrows Eyes in 30 Days
A snail that regrows its eyes may hold the genetic clues to restoring human sight. Human eyes are intricate organs that cannot regrow once damaged. Surprisingly, they share key structural features with the eyes [...]
This Is Why the Same Virus Hits People So Differently
Scientists have mapped how genetics and life experiences leave lasting epigenetic marks on immune cells. The discovery helps explain why people respond so differently to the same infections and could lead to more personalized [...]
Rejuvenating neurons restores learning and memory in mice
EPFL scientists report that briefly switching on three “reprogramming” genes in a small set of memory-trace neurons restored memory in aged mice and in mouse models of Alzheimer’s disease to level of healthy young [...]
New book from Nanoappsmedical Inc. – Global Health Care Equivalency
A new book by Frank Boehm, NanoappsMedical Inc. Founder. This groundbreaking volume explores the vision of a Global Health Care Equivalency (GHCE) system powered by artificial intelligence and quantum computing technologies, operating on secure [...]
New Molecule Blocks Deadliest Brain Cancer at Its Genetic Root
Researchers have identified a molecule that disrupts a critical gene in glioblastoma. Scientists at the UVA Comprehensive Cancer Center say they have found a small molecule that can shut down a gene tied to glioblastoma, a [...]
Scientists Finally Solve a 30-Year-Old Cancer Mystery Hidden in Rye Pollen
Nearly 30 years after rye pollen molecules were shown to slow tumor growth in animals, scientists have finally determined their exact three-dimensional structures. Nearly 30 years ago, researchers noticed something surprising in rye pollen: [...]
NanoMedical Brain/Cloud Interface – Explorations and Implications. A new book from Frank Boehm
New book from Frank Boehm, NanoappsMedical Inc Founder: This book explores the future hypothetical possibility that the cerebral cortex of the human brain might be seamlessly, safely, and securely connected with the Cloud via [...]
How lipid nanoparticles carrying vaccines release their cargo
A study from FAU has shown that lipid nanoparticles restructure their membrane significantly after being absorbed into a cell and ending up in an acidic environment. Vaccines and other medicines are often packed in [...]
New book from NanoappsMedical Inc – Molecular Manufacturing: The Future of Nanomedicine
This book explores the revolutionary potential of atomically precise manufacturing technologies to transform global healthcare, as well as practically every other sector across society. This forward-thinking volume examines how envisaged Factory@Home systems might enable the cost-effective [...]
A Virus Designed in the Lab Could Help Defeat Antibiotic Resistance
Scientists can now design bacteria-killing viruses from DNA, opening a faster path to fighting superbugs. Bacteriophages have been used as treatments for bacterial infections for more than a century. Interest in these viruses is rising [...]
Sleep Deprivation Triggers a Strange Brain Cleanup
When you don’t sleep enough, your brain may clean itself at the exact moment you need it to think. Most people recognize the sensation. After a night of inadequate sleep, staying focused becomes harder [...]
Lab-grown corticospinal neurons offer new models for ALS and spinal injuries
Researchers have developed a way to grow a highly specialized subset of brain nerve cells that are involved in motor neuron disease and damaged in spinal injuries. Their study, published today in eLife as the final [...]
Urgent warning over deadly ‘brain swelling’ virus amid fears it could spread globally
Airports across Asia have been put on high alert after India confirmed two cases of the deadly Nipah virus in the state of West Bengal over the past month. Thailand, Nepal and Vietnam are among the [...]















