Alzheimer’s disease, an irreversible form of dementia, is considered the world’s most common neurodegenerative disease.
The prime risk factor for Alzheimer’s is age, although it remains unclear why. It is known that the insulating layer around nerve cells in the brain, named myelin, degenerates with age.
Researchers at the Max Planck Institute (MPI) for Multidisciplinary Sciences in Göttingen have now shown that such defective myelin actively promotes disease-related changes in Alzheimer’s.
Slowing down age-related myelin damage could open up new ways to prevent the disease or delay its progression in the future.
What was I about to do? Where did I put the keys? When was that appointment again? It starts with slight memory lapses, followed by increasing problems to orient, to follow conversations, to articulate, or to perform simple tasks.
In the final phase, patients are most often care-dependent. Alzheimer’s disease progresses gradually and mainly affects the elderly. The risk of developing Alzheimer’s doubles every five years after the age of 65.
Signs of aging in the brain
“The underlying mechanisms that explain the correlation between age and Alzheimer’s disease have not yet been elucidated,” says Klaus-Armin Nave, director at the MPI for Multidisciplinary Sciences.
With his team of the Department of Neurogenetics, he investigates the function of myelin, the lipid-rich insulating layer of the brain’s nerve cell fibers. Myelin ensures the rapid communication between nerve cells and supports their metabolism.
“Intact myelin is critical for normal brain function. We have shown that age-related changes in myelin promote pathological changes in Alzheimer’s disease,” Nave says.
In a new study now published in the journal Nature, the scientists explored the possible role of age-related myelin degradation in the development of Alzheimer’s. Their work focused on a typical feature of the disease.
“Alzheimer’s is characterized by the deposition of certain proteins in the brain, the so-called amyloid beta peptides, or Aꞵ peptides for short,” states Constanze Depp, one of the study’s two first authors.
“The Aꞵ peptides clump together to form amyloid plaques. In Alzheimer’s patients, these plaques form many years and even decades before the first symptoms appear.” In the course of the disease, nerve cells finally die irreversibly and the transmission of information in the brain is disturbed.
Using imaging and biochemical methods, the scientists examined and compared different mouse models of Alzheimer’s in which amyloid plaques occur in a similar way to those in Alzheimer’s patients.
For the first time, however, they studied Alzheimer’s mice that additionally had myelin defects, which also occur in the human brain at an advanced age.
Ting Sun, second first author of the study, describes the results: “We saw that myelin degradation accelerates the deposition of amyloid plaques in the mice’ brains. The defective myelin stresses the nerve fibers, causing them to swell and produce more Aꞵ peptides.”
Overwhelmed immune cells
At the same time, the myelin defects attract the attention of the brain’s immune cells called microglia.
“These cells are very vigilant and monitor the brain for any sign of impairment. They can pick up and destroy substances, such as dead cells or cellular components,” Depp adds.
Normally, microglia detect and eliminate amyloid plaques, keeping the buildup at bay. However, when microglia are confronted with both defective myelin and amyloid plaques, they primarily remove the myelin remnants while the plaques continue to accumulate.
The researchers suspect that the microglia are ‘distracted’ or overwhelmed by the myelin damage, and thus cannot respond properly to plaques.
The results of the study show, for the first time, that defective myelin in the aging brain increases the risk of Aꞵ peptide deposition.
“We hope this will lead to new therapies. If we succeeded in slowing down age-related myelin damage, this could also prevent or slow down Alzheimer’s disease,” Nave says.

News
Tiny robots made from human cells heal damaged tissue
The ‘anthrobots’ were able to repair a scratch in a layer of neurons in the lab. Scientists have developed tiny robots made of human cells that are able to repair damaged neural tissue1. The [...]
Antimicrobial Resistance – A Global Concern
Key facts Antimicrobial resistance (AMR) is one of the top global public health and development threats. It is estimated that bacterial AMR was directly responsible for 1.27 million global deaths in 2019 and contributed to [...]
Advancing Pancreatic Cancer Treatment with Nanoparticle-Based Chemotherapy
Pancreatic cancer, a particularly lethal form of cancer and the fourth leading cause of cancer-related deaths in the western world, often remains undiagnosed until its advanced stages due to a lack of early symptoms. [...]
The ‘jigglings and wigglings of atoms’ reveal key aspects of COVID-19 virulence evolution
Richard Feynman famously stated, "Everything that living things do can be understood in terms of the jigglings and wigglings of atoms." This week, Nature Nanotechnology features a study that sheds new light on the evolution of the coronavirus [...]
AI system self-organizes to develop features of brains of complex organisms
Cambridge scientists have shown that placing physical constraints on an artificially-intelligent system—in much the same way that the human brain has to develop and operate within physical and biological constraints—allows it to develop features [...]
How Blind People Recognize Faces via Sound
Summary: A new study reveals that people who are blind can recognize faces using auditory patterns processed by the fusiform face area, a brain region crucial for face processing in sighted individuals. The study employed [...]
Treating tumors with engineered dendritic cells
Cancer biologists at EPFL, UNIGE, and the German Cancer Research Center (Heidelberg) have developed a novel immunotherapy that does not require knowledge of a tumor's antigenic makeup. The new results may pave the way [...]
Networking nano-biosensors for wireless communication in the blood
Biological computing machines, such as micro and nano-implants that can collect important information inside the human body, are transforming medicine. Yet, networking them for communication has proven challenging. Now, a global team, including EPFL [...]
Popular Hospital Disinfectant Ineffective Against Common Superbug
Research conducted during World Antimicrobial Awareness Week examines the effects of employing suggested chlorine-based chemicals to combat Clostridioides difficile, the leading cause of antibiotic-related illness in healthcare environments worldwide. A recent study reveals that a [...]
Subjectivity and the Evolution of AI Philosophy
An Historical Overview of the Philosophy of Artificial Intelligence by Anton Vokrug Many famous people in the philosophy of technology have tried to comprehend the essence of technology and link it to society and human [...]
How Lockdowns Shaped the Virus: AI Uncovers COVID-19’s Evolutionary Secrets
A new research study shows that human behavior, like lockdowns, influences the evolution of COVID-19, leading to strains that are more transmissible earlier in their lifecycle. Using artificial intelligence technology and mathematical modeling, a research [...]
Groundbreaking therapy approved: chances of cure for 7000 diseases:
Hereditary diseases are usually not curable. Now, however, an epochal turning point is taking place in medicine: For the first time ever, a therapy with the CRISPR/Cas9 gene scissors has received approval. According to [...]
Uncovering the Genetic Mystery: Why Some Never Show COVID-19 Symptoms
New study shows that common genetic variation among people is responsible for mediating SARS-CoV-2 asymptomatic infection. Have you ever wondered why some people never became sick from COVID-19? A study published recently in the journal Nature shows that common [...]
AI maps tumor geography for tailored treatments
Researchers have integrated AI approaches from satellite mapping and community ecology to develop a tool to interpret data obtained from tumor tissue imaging, with the aim of implementing a more individualized approach to cancer care. [...]
Lung cancer cells’ ‘memories’ suggest new strategy for improving treatment
A new understanding of lung cancer cells' "memories" suggests a new strategy for improving treatment, Memorial Sloan Kettering Cancer Center (MSK) researchers have found. Research from the lab of cancer biologist Tuomas Tammela, MD, Ph.D. [...]
Artificial sensor similar to a human fingerprint can recognize fine fabric textures
An artificial sensory system that is able to recognize fine textures—such as twill, corduroy and wool—with a high resolution, similar to a human finger, is reported in a Nature Communications paper. The findings may help improve the subtle [...]