When SARS-CoV-2 first began spreading across the globe, not every lab was equipped to study it directly. The virus behind the current pandemic is highly pathogenic and transmissible, leading the US Centers for Disease Control and Prevention to require many of the same biosafety guidelines that shape the study of diseases such as tuberculosis and Ebola.
As in many moments throughout the last year, the scientific community responded by creatively adapting existing tools to the study of COVID-19. Among these, researchers turned to models of the pathogen such as pseudoviruses and chimeric viruses that can be studied safely in labs with lower biosafety level (BSL) clearance than required for studying the wildtype version, in an effort to expand the study of the novel coronavirus. Pseudoviruses don’t replicate, rendering them harmless, but by replacing their surface envelope proteins with those of SARS-CoV-2, researchers can glean insights into the ways the pathogen infects cells. A chimeric virus is made by inserting the genetic material of one virus into the genome of another, safe surrogate, and these introduced sequences are passed on when the virus replicates.
In addition to their safety, pseudoviruses are “extremely versatile in that you can . . . introduce different envelope proteins and you can introduce mutations, which is making it extremely useful for us to screen a lot of different variants,” says Carol Weiss, a virologist who heads the laboratory of immunoregulation at the US Food and Drug Administration. “If you want to introduce mutations in real viruses, it’s a whole lot more work.”
An approximation of the real thing
Pseudoviruses were first developed in the 1960s, after scientists began studying a vesicular stomatitis virus (VSV) isolated from cattle. In addition to replicating well in culture, they later learned that its surface protein, VSV-G, facilitates entry into all eukaryotic cells, making the virus a useful vector not only as a pseudovirus but as a ferry to deliver DNA into cells for therapeutic purposes. The first Ebola vaccine was developed using a VSV platform, and more recently, the virus has been engineered to seek out and destroy cancer cells.
HIV-based platforms, which came about in the 1980s, have since replaced VSV as the most common model for developing both pseudo- and chimeric viruses. Unlike VSV’s negative-strand RNA genome that must be transcribed once inside the cell, HIV’s positive-strand RNA genome can instantly begin translation, making pseudoviruses based on HIV faster to produce. HIV-based model viruses have now been used in many of the same applications as VSV, with scientists applying them to the study of diseases such as AIDS, SARS, MERS, and influenza.
We wanted to really validate that the tool that we generated did appear exactly, with everything we could throw at it, the same way as SARS-CoV-2.
—Sean Whelan, Washington University
To harness these surrogates to study SARS-CoV-2, researchers first needed to prove that their pseudo- and chimeric viruses are viable stand-ins for the real thing. SARS-CoV-2 is a uniquely bulky virus—its genome is roughly 30 kilobases, while HIV and VSV sit around 10 kilobases—and while it is more similar to HIV, none of the three are closely related. Fortunately, both HIV and VSV appear to be compatible for making coronavirus models.
Sean Whelan, a virologist at Washington University in St. Louis, is one of many scientists who has developed a viable chimeric virus platform and quantified its performance in the face of antibodies against the real thing. To do this, he developed two complimentary assays—one for use in infectious disease laboratories with the BSL-3 clearance required to handle live SARS-CoV-2 and another for labs working under a lower, BSL-2 clearance—and studied how each virus responded to a battery of different treatments. It wasn’t enough, he says, to test the viruses’ ability to evade just one type of antibody, so he used monoclonal and polyclonal antibodies and serum from recovered COVID-19 patients—as well as a type of ACE2 decoy protein suggested as a possible therapeutic to draw the virus away from the cells’ own receptor. “We wanted to really validate that the tool that we generated did appear exactly, with everything we could throw at it, the same way as SARS-CoV-2.”
Image Credit: Envato / Amanda Scott
Post by Amanda Scott, NA CEO. Follow her on twitter @tantriclens
Thanks to Heinz V. Hoenen. Follow him on twitter: @HeinzVHoenen
News
Lockdowns prematurely aged teenagers’ brains, study suggests
Teenage girls' brains may have prematurely aged by up to four years during the Covid pandemic, an American study suggests. Adolescent boys weren't immune either with their brain's also showing signs of undue wear [...]
Long COVID Still a Mystery: Routine Labs Show No Reliable Biomarkers
Routine lab tests are not reliable for diagnosing Long COVID, according to a new study. The research found that no clinical lab values could serve as biomarkers, highlighting the need to focus on symptoms [...]
Tiny magnetic robots could treat bleeds in the brain
Researchers have created nanoscale robots which could be used to manage bleeds in the brain caused by aneurysms. The development could enable precise, relatively low-risk treatment of brain aneurysms, which cause around 500,000 deaths globally [...]
Turning Mosquito Spit Into a Weapon Against the West Nile Virus and Other Deadly Diseases
Anita Saraf investigates mosquito saliva to understand how viruses like dengue and West Nile are transmitted, using mass spectrometry to identify potential targets for vaccines and treatments. You might guess it’d be tough to [...]
Ethics in Nanomedicine: Key Issues and Principles
Nanomedicine, a branch of nanotechnology, is revolutionizing healthcare by enabling the manipulation of materials at the nanoscale to diagnose, treat, and prevent diseases. Unlike traditional treatments, nanoparticles (NPs) are highly precise in targeting diseased [...]
A call for robust H5N1 influenza preparedness and response
As the global threat of H5N1 influenza looms with outbreaks across species and continents including the U.S., three international vaccine and public health experts say it is time to fully resource and support a [...]
Mucosal COVID-19 boosters outperform mRNA shots in preventing upper airway infections
In a recent study published in Nature Immunology, a team of researchers from the United States used non-human primate models to compare the protection conferred by an intramuscular booster dose of the bivalent messenger ribonucleic acid [...]
How Space Travel Really Changes Astronauts – From the Inside Out
International team reveals previously unknown effects on physiology that could shape the future of long-duration space missions. Researchers have discovered significant changes in the gut microbiome due to spaceflight, which affects host physiology and [...]
Breakthrough in blood stem cell development offers hope for leukemia and bone marrow failure
Melbourne researchers have made a world first breakthrough into creating blood stem cells that closely resemble those in the human body. And the discovery could soon lead to personalized treatments for children with leukemia [...]
Scientists Develop Game-Changing Needle-Free COVID-19 Intranasal Vaccine
A new mucosal COVID-19 vaccine poised to revolutionize the delivery process is especially beneficial for those with a fear of needles. A next-generation COVID-19 mucosal vaccine is set to be a game-changer not only when delivering [...]
Scientists Develop All-in-One Solution To Catch and Destroy “Forever Chemicals”
A new water treatment system developed by UBC researchers efficiently removes and destroys PFAS pollutants using a dual-action catalyst, offering a sustainable and cost-effective solution for water purification challenges. Chemical engineers at the University of [...]
New method accelerates drug discovery from years to months
Researchers from the University of Cincinnati College of Medicine and Cincinnati Children's Hospital have found a new method to increase both speed and success rates in drug discovery. The study, published Aug. 30 in [...]
A new smart mask analyzes your breath to monitor your health
Your breath can give away a lot about you. Each exhalation contains all sorts of compounds, including possible biomarkers for disease or lung conditions, that could give doctors a valuable insight into your health. [...]
Study reveals the role of blood clotting in COVID-19
In a study that reshapes what we know about COVID-19 and its most perplexing symptoms, scientists have discovered that the blood coagulation protein fibrin causes the unusual clotting and inflammation that have become hallmarks [...]
A Novel Cancer Vaccine Combining Nano-11 and ADU-S100
In a recent article published in npj Vaccines, researchers detailed the development of a novel cancer vaccine that combines a plant-derived nanoparticle adjuvant, Nano-11, with a clinically tested STING agonist, ADU-S100. The primary objective was [...]
AI spots cancer and viral infections with nanoscale precision
Researchers have developed an artificial intelligence which can differentiate cancer cells from normal cells, as well as detect the very early stages of viral infection inside cells. The findings, published today in a study [...]