Human fingers and toes don't grow outward as you might expect. Instead, our dexterous digits are 'sculpted' within a larger foundational bud.
Now the first human cell atlas of early limb development has at last revealed in exquisite detail exactly how that happens.
Prior to this, our understanding of vertebrate limb development has been largely based on model organisms, such as mice and chicken embryos, and lab-grown stem cells.
Although humans share some similarities with other vertebrates, their biology obviously diverges from ours.
The details of early limb formation have also been rendered a little fuzzy by technological limitations, now surpassed, and restrictions on the use of human embryos for research beyond 14 days, a rule that has been relaxed under strict ethical provisions.
The picture constructed so far had limbs initially emerging as shapeless limb buds protruding from the sides of the embryonic body. Eight weeks later, if all goes to plan, those pouches have transformed into anatomically distinct, recognizable limbs, complete with fingers and toes.
It's a remarkable process in early embryonic development that produces arguably one of our most defining human features: our long, slender, opposable thumbs.
In 2014, scientists described how specific molecules expressed at precise moments in embryonic development moulded the formation of fingers and toes, although those predictions were based on simulations of experimental data.
Now, an international team led by cell biologist Bao Zhang at Sun Yat-sen University in China, has colored in that process in exquisite detail, by analyzing thousands of single cells from donated embryonic tissues that were between 5 and 9 weeks of development.
"We identified 67 distinct cell clusters from 125,955 captured single cells, and spatially mapped them across four first trimester timepoints to shed new light on limb development," the team writes in their published paper.
"In doing so, we uncovered several new cell states," they add.
"What we reveal is a highly complex and precisely regulated process," says Hongbo Zhang, senior author and cell biologist from Sun Yat-sen University in China.
"It is like watching a sculptor at work, chiseling away at a block of marble to reveal a masterpiece. In this case, nature is the sculptor, and the result is the incredible complexity of our fingers and toes."
As you can see in the video below, the researchers mapped gene expression patterns to see how those genetic instructions shaped how digits formed.
From hazy beginnings, the expression of IRX1 (represented in aqua in the video below), a gene critical for digit formation, and SOX9 (represented in magenta in the video), a gene essential for skeletal development, overlap in five distinct lengths within the developing limb.
At around 7 weeks of development, programmed cell death instructions are switched on in the undifferentiated cells congregating between these lengths (associated with the expression of MSX1, represented in yellow in the video), and well-defined fingers and toes are revealed.
Like a block of marble being sculpted into a masterpiece by the expression of these genes, our fingers and toes are chiseled out from tip to base as unneeded cells recede.
Small irregularities in this process can lead to limb deformities, which 1 in 500 people are born with – making them some of the most frequently reported syndromes at birth.
The researchers also mapped the expression of genes linked with congenital conditions, such as short fingers (brachydactyly) or webbed digits (syndactyly), to get a better sense of where limb development gets off course.
"For the first time, we have been able to capture the remarkable process of limb development down to single-cell resolution in space and time," says Sarah Teichmann, senior author and computational biologist at the Wellcome Sanger Institute.
She says creating single-cell atlases is "deepening our understanding of how anatomically complex structures form, helping us uncover the genetic and cellular processes behind healthy human development, with many implications for research and healthcare."
Importantly, the researchers also showed that limb formation in humans and mice does follow similar trajectories, with some differences in activated genes and cell types.
The study has been published in Nature.

News
Scientist tackles key roadblock for AI in drug discovery
The drug development pipeline is a costly and lengthy process. Identifying high-quality "hit" compounds—those with high potency, selectivity, and favorable metabolic properties—at the earliest stages is important for reducing cost and accelerating the path [...]
Nanoplastics with environmental coatings can sneak past the skin’s defenses
Plastic is ubiquitous in the modern world, and it's notorious for taking a long time to completely break down in the environment - if it ever does. But even without breaking down completely, plastic [...]
Chernobyl scientists discover black fungus feeding on deadly radiation
It looks pretty sinister, but it might actually be incredibly helpful When reactor number four in Chernobyl exploded, it triggered the worst nuclear disaster in history, one which the surrounding area still has not [...]
Long COVID Is Taking A Silent Toll On Mental Health, Here’s What Experts Say
Months after recovering from COVID-19, many people continue to feel unwell. They speak of exhaustion that doesn’t fade, difficulty breathing, or an unsettling mental haze. What’s becoming increasingly clear is that recovery from the [...]
Study Delivers Cancer Drugs Directly to the Tumor Nucleus
A new peptide-based nanotube treatment sneaks chemo into drug-resistant cancer cells, providing a unique workaround to one of oncology’s toughest hurdles. CiQUS researchers have developed a novel molecular strategy that allows a chemotherapy drug to [...]
Scientists Begin $14.2 Million Project To Decode the Body’s “Hidden Sixth Sense”
An NIH-supported initiative seeks to unravel how the nervous system tracks and regulates the body’s internal organs. How does your brain recognize when it’s time to take a breath, when your blood pressure has [...]
Scientists Discover a New Form of Ice That Shouldn’t Exist
Researchers at the European XFEL and DESY are investigating unusual forms of ice that can exist at room temperature when subjected to extreme pressure. Ice comes in many forms, even when made of nothing but water [...]
Nobel-winning, tiny ‘sponge crystals’ with an astonishing amount of inner space
The 2025 Nobel Prize in chemistry was awarded to Richard Robson, Susumu Kitagawa and Omar Yaghi on Oct. 8, 2025, for the development of metal-organic frameworks, or MOFs, which are tunable crystal structures with extremely [...]
Harnessing Green-Synthesized Nanoparticles for Water Purification
A new review reveals how plant- and microbe-derived nanoparticles can power next-gen water disinfection, delivering cleaner, safer water without the environmental cost of traditional treatments. A recent review published in Nanomaterials highlights the potential of green-synthesized nanomaterials (GSNMs) in [...]
Brainstem damage found to be behind long-lasting effects of severe Covid-19
Damage to the brainstem - the brain's 'control center' - is behind long-lasting physical and psychiatric effects of severe Covid-19 infection, a study suggests. Using ultra-high-resolution scanners that can see the living brain in [...]
CT scan changes over one year predict outcomes in fibrotic lung disease
Researchers at National Jewish Health have shown that subtle increases in lung scarring, detected by an artificial intelligence-based tool on CT scans taken one year apart, are associated with disease progression and survival in [...]
AI Spots Hidden Signs of Disease Before Symptoms Appear
Researchers suggest that examining the inner workings of cells more closely could help physicians detect diseases earlier and more accurately match patients with effective therapies. Researchers at McGill University have created an artificial intelligence tool capable of uncovering [...]
Breakthrough Blood Test Detects Head and Neck Cancer up to 10 Years Before Symptoms
Mass General Brigham’s HPV-DeepSeek test enables much earlier cancer detection through a blood sample, creating a new opportunity for screening HPV-related head and neck cancers. Human papillomavirus (HPV) is responsible for about 70% of [...]
Study of 86 chikungunya outbreaks reveals unpredictability in size and severity
The symptoms come on quickly—acute fever, followed by debilitating joint pain that can last for months. Though rarely fatal, the chikungunya virus, a mosquito-borne illness, can be particularly severe for high-risk individuals, including newborns and older [...]
Tiny Fat Messengers May Link Obesity to Alzheimer’s Plaque Buildup
Summary: A groundbreaking study reveals how obesity may drive Alzheimer’s disease through tiny messengers called extracellular vesicles released from fat tissue. These vesicles carry lipids that alter how quickly amyloid-β plaques form, a hallmark of [...]
Ozone exposure weakens lung function and reshapes the oral microbiome
Scientists reveal that short-term ozone inhalation doesn’t just harm the lungs; it reshapes the microbes in your mouth, with men facing the greatest risks. Ozone is a toxic environmental pollutant with wide-ranging effects on [...]