A large multinational group of researchers has shown how the Omicron variant of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has gained exceptional immune evasion properties but also a much lower propensity to enter cells such as those in lung alveoli, resulting in its reduced pathogenicity. Their paper is currently released as an unedited version of the manuscript prior to publication in the journal Nature.
The Omicron variant of SARS-CoV-2 initially detected in South Africa in November 2021 during the ongoing coronavirus disease 2019 (COVID-19) pandemic, spread around the world at a ferocious pace, and is known to carry more than 30 mutations in its spike glycoprotein.
Moreover, the Omicron variant has been linked to a rather rapid increase in case numbers, with recent data demonstrating substantial re-infection rates and vaccine ‘breakthrough’ potential, probably due to a successful evasion of neutralizing antibody responses.
On the other hand, recent findings suggest (somewhat paradoxically) that there is also a reduced disease severity in individuals infected with the Omicron variant when compared to the Delta variant of concern. The pertinent question then is – does that mean SARS-CoV-2 is evolving into a milder virus?
In this Nature paper, the large international research group explored biological properties of Omicron variant of concern with particular focus on spike-mediated evasion of neutralizing antibodies, increased receptor binding affinity, as well as a shift in tropism away from cells expressing TMPRSS2 and reduced ability to generate syncytia (or fused cells).
Appraising neutralization and cell entry
One of the critical questions in this study was whether antibodies developed after vaccinations are able to neutralize Omicron. For that purpose, the researchers have synthesized codon-optimized spike expression plasmids for spike glycoproteins for both Delta and Omicron variants of concern.
Then they have generated pseudovirus particles by co-transfecting the spike expression plasmids with a lentivirus, which represents an efficient method for the delivery of transgenes for research purposes. Many different cell lines were used to explore the propensity for cell entry, as well as the action of certain drugs.
In order to confirm the loss of neutralizing activity against the Omicron variant following the second vaccine dose, the researchers have used a live virus experimental system for comparing Delta and Omicron variants against serum specimens taken four weeks after the second dose of BioNTech/Pfizer (BNT162b2) vaccine.
Lower affinity for the cell receptor
The study has highlighted that spike glycoprotein in Omicron SARS-CoV-2 variant comes with a higher affinity for angiotensin-converting enzyme 2 (ACE2) cell receptor (which is pivotal for cell entry) in comparison to the Delta variant of concern.
Furthermore, there is a marked change of antigenicity due to a cornucopia of mutations, which results in significant evasion of monoclonal antibodies used for treatment, but also vaccine-elicited polyclonal neutralizing antibodies after two doses. Still, mRNA vaccination as a third vaccine dose in a way rescues and broadens this neutralization process.
The defect for Omicron pseudovirus to enter specific cell types in an effective manner has been correlated with higher cellular RNA expression of TMPRSS2 (Transmembrane Serine Protease 2), while a knock-down of TMPRSS2 influenced Delta entry to a much greater extent than Omicron.
More specifically, the replication process was similar for Omicron and Delta variants in human nasal epithelial cultures; however, in lower airway organoids, lung cells, and intestinal cells, Omicron showed much lower replication potential.
Drug inhibitors that target specific entry pathways demonstrated that the Omicron spike glycoprotein does not efficiently utilize TMPRSS2 protease, which actually promotes cell entry via plasma membrane fusion. This means this variant depends more on cell entry via the endocytic pathway.
The need for complex molecular insights
In summary, the Omicron SARS-CoV-2 variant has gained immune evasion properties, but at the same time compromised cell entry in TMPRSS2 expressing cells (primarily those in alveoli), as well as the ability to form syncytia or cell fusion – a combination characteristically linked to reduced ability to cause a severe disease.
“Our data showing tropism differences for Omicron in organoid systems and human nasal epithelial cultures are limited by the fact that they are in vitro systems, albeit using primary human tissue”, state study authors in this Nature paper.
“It should also be noted that levels of TMPRRS2 may impact ACE2, particularly as TMPRSS2 has been implicated in ACE2 cleavage, and our effect sizes were impacted by ACE2 expression”, they emphasize.
Most importantly, the experience with the Omicron variant has clearly shown that any predictions regarding replication and tropism based only on gene sequence can be misleading; thus, a comprehensive molecular understanding of the tropism change will be pivotal as novel SARS-CoV-2 variants continue to emerge.

News
Cold Sore Virus Linked to Alzheimer’s, Antivirals May Lower Risk
Summary: A large study suggests that symptomatic infection with herpes simplex virus 1 (HSV-1)—best known for causing cold sores—may significantly raise the risk of developing Alzheimer’s disease. Researchers found that people with HSV-1 were 80% [...]
Nanoparticle-Based Combination Therapy for Resistant Melanoma
A recent study published in Small addresses the persistent difficulty of treating refractory melanoma, an aggressive form of skin cancer that often does not respond to existing therapies. Although diagnostic tools and immunotherapies have improved in [...]
Our DNA May Evolve Much Faster Than Previously Thought
Rapidly mutating DNA regions were mapped using a multi-generational family and advanced sequencing tools. Understanding how human DNA changes over generations is crucial for estimating genetic disease risks and tracing our evolutionary history. However, some of [...]
AI therapy may help with mental health, but innovation should never outpace ethics
Mental health services around the world are stretched thinner than ever. Long wait times, barriers to accessing care and rising rates of depression and anxiety have made it harder for people to get timely help. As a result, governments and health care providers are [...]
Global life expectancy plunges as WHO warns of deepening health crisis Post-COVID
The World Health Organization (WHO) has sounded the alarm on the long-term health repercussions of the COVID-19 pandemic in its newly released World Health Statistics Report 2025. The report reveals a staggering decline in global [...]
Researchers map brain networks involved in word retrieval
How are we able to recall a word we want to say? This basic ability, called word retrieval, is often compromised in patients with brain damage. Interestingly, many patients who can name words they [...]
Melting Ice Is Changing the Color of the Ocean – Scientists Are Alarmed
Melting sea ice changes not only how much light enters the ocean, but also its color, disrupting marine photosynthesis and altering Arctic ecosystems in subtle but profound ways. As global warming causes sea ice in the [...]
Your Washing Machine Might Be Helping Antibiotic-Resistant Bacteria Spread
A new study reveals that biofilms in washing machines may contain potential pathogens and antibiotic resistance genes, posing possible risks for laundering healthcare workers’ uniforms at home. Washing healthcare uniforms at home could be [...]
Scientists Discover Hidden Cause of Alzheimer’s Hiding in Plain Sight
Researchers found the PHGDH gene directly causes Alzheimer’s and discovered a drug-like molecule, NCT-503, that may help treat the disease early by targeting the gene’s hidden function. A recent study has revealed that a gene previously [...]
How Brain Cells Talk: Inside the Complex Language of the Human Mind
Introduction The human brain contains nearly 86 billion neurons, constantly exchanging messages like an immense social media network, but neurons do not work alone – glial cells, neurotransmitters, receptors, and other molecules form a vast [...]
Oxford study reveals how COVID-19 vaccines prevent severe illness
A landmark study by scientists at the University of Oxford, has unveiled crucial insights into the way that COVID-19 vaccines mitigate severe illness in those who have been vaccinated. Despite the global success of [...]
Annual blood test could detect cancer earlier and save lives
A single blood test, designed to pick up chemical signals indicative of the presence of many different types of cancer, could potentially thwart progression to advanced disease while the malignancy is still at an early [...]
How the FDA opens the door to risky chemicals in America’s food supply
Lining the shelves of American supermarkets are food products with chemicals linked to health concerns. To a great extent, the FDA allows food companies to determine for themselves whether their ingredients and additives are [...]
Superbug crisis could get worse, killing nearly 40 million people by 2050
The number of lives lost around the world due to infections that are resistant to the medications intended to treat them could increase nearly 70% by 2050, a new study projects, further showing the [...]
How Can Nanomaterials Be Programmed for Different Applications?
Nanomaterials are no longer just small—they are becoming smart. Across fields like medicine, electronics, energy, and materials science, researchers are now programming nanomaterials to behave in intentional, responsive ways. These advanced materials are designed [...]
Microplastics Are Invading Our Arteries, and It Could Be Increasing Your Risk of Stroke
Higher levels of micronanoplastics were found in carotid artery plaque, especially in people with stroke symptoms, suggesting a potential new risk factor. People with plaque buildup in the arteries of their neck have been [...]