The precise, continuous monitoring of pollutants such as nitrogen oxides (NOx) in high humidity is a tough challenge for low-cost and stretchable gas sensors.
A recent article published in Microsystems & Nanoengineering describes the design and implementation of a novel, moisture-resistant, and wearable NOx gas sensor based on laser-induced graphene (LIG) that has proven successful in monitoring the environment and classifying individuals with breathing problems.
Importance of Nitrogen Oxides (NOx) Detection
Nitrogen oxides (collectively referred to as NOx) produced by combustion processes and petroleum refineries are significant air pollutants that cause bronchitis, asthma, and heart-aggravating disorders.
Nitric oxide (NO), a key biomarker for pulmonary inflammation, is of great relevance for the non-invasive detection and treatment of respiratory disorders such as lung cancer and ventilator-associated pneumonitis. This is because the level of nitric oxide in exhaled breath of asthma patients surpasses hundreds of parts per billion (ppb), but this amount is less than a few tens of ppb in healthy individuals.
Consequently, it is of the utmost significance to create new, inexpensive, and dependable gas sensors for continuously and precisely detecting nitrogen oxide (NOx) in human breath.
Wearable Graphene-based Gas Sensors for Detection of NOx
Several technologies using nanoparticles such as metal oxides, graphene, carbon nanotubes, and conductive polymers have been developed to detect NOx in human breath.
In contrast to the electrolytic cells, field-effect semiconductors and other conventional gas sensors, wearable NOx gas sensors based on graphene exhibit low noise and good mechanical robustness.
Wearable electronic devices can gather electrical, biochemical, thermal, physical, and biological information for comprehensive health management. The growing interest in personalized air quality assessment and breath testing has also increased the need for wearable graphene-based gas sensors that can detect different harmful chemicals, such as nitrogen oxides (NOx), precisely and continuously.
Graphene-based gas sensors with unmodified surfaces show low accuracy due to the absence of active sites. To tackle this issue, the newly discovered 3D laser-induced graphene (LIG) can be utilized because it provides a large number of active sites on the surface for gas-solid interactions.
Relative Humidity: A Major Limitation in Accurate Gas Sensing
As water particles populate the active surface functional sites of sensing nanomaterials, the relative humidity (RH) significantly affects the absorption and equilibrium mechanisms of the target gas, resulting in substantial response changes in breath samples with an RH between 50 and 95 percent.
The impact of relative humidity on gas sensing can be minimized by utilizing coated integrated heating components, hydrophobic self-assembled monolayers (SAMs), or electronic nose algorithms. However, these technologies often increase the sophistication and expense of gas sensor production.
Therefore, it is crucial to establish a simple method for designing and fabricating moisture-resistant NOx gas sensors with a large response rate, quick response/recovery, and a low limit of detection (LOD) for monitoring local air pollution and analyzing breath samples for disease diagnoses.
A Novel Moisture-Resistant LIG-based NOx Gas Sensor
In this study, the researchers created a novel, flexible, and moisture-resistant LIG-based NOx gas sensor by sandwiching the LIG sensing area between a semi-permeable polydimethylsiloxane (PDMS) layer and a flexible elastomeric platform.
The flexible, extremely sensitive, and selective LIG-based gas sensor is composed of a straight LIG sensing area and a serpentine electrode on a soft elastomeric platform. The LIG sensing region has a much narrower width (150 micro-meter) than the electrodes to produce substantially stronger resistance and concentrated Joule heating in the sensing zone,
The rapid and low-cost manufacturing method is also scalable, promising rapid large-scale production for commercial applications in the future.
Key Developments of the Research
At room temperature, the as-prepared gas sensor displays a high response rate, rapid response/recovery, and an ultralow limit of detection (LOD) for various nitrogen oxides (NOx). By adjusting laser processing parameters such as laser intensity, image frequency, and defocus distance, the laser direct writing method can produce LIG sensing zones with varying morphologies.
This unique water-resistant LIG-based gas sensor can detect the outside air quality at various times of the day by combining a high stretchability of 30 percent and a moisture-resistant capability against a relative humidity of 90 percent. In addition, it can promptly evaluate clinical breath samples to properly distinguish between patients with respiratory illnesses and healthy human beings.

News
Does Space-Time Really Exist?
Is time something that flows — or just an illusion? Exploring space-time as either a fixed “block universe” or a dynamic fabric reveals deeper mysteries about existence, change, and the very nature of reality. [...]
Unlocking hidden soil microbes for new antibiotics
Most bacteria cannot be cultured in the lab-and that's been bad news for medicine. Many of our frontline antibiotics originated from microbes, yet as antibiotic resistance spreads and drug pipelines run dry, the soil [...]
By working together, cells can extend their senses beyond their direct environment
The story of the princess and the pea evokes an image of a highly sensitive young royal woman so refined, she can sense a pea under a stack of mattresses. When it comes to [...]
Overworked Brain Cells May Hold the Key to Parkinson’s
Scientists at Gladstone Institutes uncovered a surprising reason why dopamine-producing neurons, crucial for smooth body movements, die in Parkinson’s disease. In mice, when these neurons were kept overactive for weeks, they began to falter, [...]
Old tires find new life: Rubber particles strengthen superhydrophobic coatings against corrosion
Development of highly robust superhydrophobic anti-corrosion coating using recycled tire rubber particles. Superhydrophobic materials offer a strategy for developing marine anti-corrosion materials due to their low solid-liquid contact area and low surface energy. However, [...]
This implant could soon allow you to read minds
Mind reading: Long a science fiction fantasy, today an increasingly concrete scientific goal. Researchers at Stanford University have succeeded in decoding internal language in real time thanks to a brain implant and artificial intelligence. [...]
A New Weapon Against Cancer: Cold Plasma Destroys Hidden Tumor Cells
Cold plasma penetrates deep into tumors and attacks cancer cells. Short-lived molecules were identified as key drivers. Scientists at the Leibniz Institute for Plasma Science and Technology (INP), working with colleagues from Greifswald University Hospital and [...]
This Common Sleep Aid May Also Protect Your Brain From Alzheimer’s
Lemborexant and similar sleep medications show potential for treating tau-related disorders, including Alzheimer’s disease. New research from Washington University School of Medicine in St. Louis shows that a commonly used sleep medication can restore normal sleep patterns and [...]
Sugar-Coated Nanoparticles Boost Cancer Drug Efficacy
A team of researchers at the University of Mississippi has discovered that coating cancer treatment carrying nanoparticles in a sugar-like material increases their treatment efficacy. They reported their findings in Advanced Healthcare Materials. Over a tenth of breast [...]
Nanoparticle-Based Vaccine Shows Promise in Fighting Cancer
In a study published in OncoImmunology, researchers from the German Cancer Research Center and Heidelberg University have created a therapeutic vaccine that mobilizes the immune system to target cancer cells. The researchers demonstrated that virus peptides combined [...]
Quantitative imaging method reveals how cells rapidly sort and transport lipids
Lipids are difficult to detect with light microscopy. Using a new chemical labeling strategy, a Dresden-based team led by André Nadler at the Max Planck Institute of Molecular Cell Biology and Genetics (MPI-CBG) and [...]
Ancient DNA reveals cause of world’s first recorded pandemic
Scientists have confirmed that the Justinian Plague, the world’s first recorded pandemic, was caused by Yersinia pestis, the same bacterium behind the Black Death. Dating back some 1,500 years and long described in historical texts but [...]
“AI Is Not Intelligent at All” – Expert Warns of Worldwide Threat to Human Dignity
Opaque AI systems risk undermining human rights and dignity. Global cooperation is needed to ensure protection. The rise of artificial intelligence (AI) has changed how people interact, but it also poses a global risk to human [...]
Nanomotors: Where Are They Now?
First introduced in 2004, nanomotors have steadily advanced from a scientific curiosity to a practical technology with wide-ranging applications. This article explores the key developments, recent innovations, and major uses of nanomotors today. A [...]
Study Finds 95% of Tested Beers Contain Toxic “Forever Chemicals”
Researchers found PFAS in 95% of tested beers, with the highest levels linked to contaminated local water sources. Per- and polyfluoroalkyl substances (PFAS), better known as forever chemicals, are gaining notoriety for their ability [...]
Long COVID Symptoms Are Closer To A Stroke Or Parkinson’s Disease Than Fatigue
When most people get sick with COVID-19 today, they think of it as a brief illness, similar to a cold. However, for a large number of people, the illness doesn't end there. The World [...]