If you’ve been worried by recent news stories about a strain of covid called “delta plus,” it may freak you out to hear that scientists just expanded the delta family from four variants to 13.
Please take a deep breath. Scientists would really like you to understand that there’s no evidence delta has learned any new tricks, and these new names are for helping keep track of covid’s evolution—not nine new reasons to panic. And many researchers are also really, really hoping you’ll stop saying “delta plus.”
“The name ‘delta plus’ is completely incorrect, because it gives the perception that this will cause more damage,” says Anderson Brito, a member of the Pango Lineage Designation Committee, which assigns scientific names like B.1.1.7 to new branches of the virus. “So far, we have no evidence any of the mutations affect behavior compared to the original delta variant.”
It might be helpful to think of covid as a tree. Delta is like a thick branch on that tree—a big family of viruses that share a common ancestor and some of the same mutations, which let them spread between people more quickly. When the big branch grows new twigs, which happens all the time, scientists keep track by using technical names that include numbers and letters. But a new scientific name doesn’t mean those viruses will act any differently from the branch they grew from—and if one of those new branches does start to change its behavior, it gets a new Greek letter, not a “plus.”
(Now is a good time to note that while some of delta’s mutations make it more transmissible, vaccines are still very good at preventing severe illness from every known strain of covid.)
What’s in a name?
This naming confusion stems mostly from the way journalists (and their scientist sources) have blended two commonly used systems of tracking covid’s evolution—despite the fact that the approaches have very different strategies and goals.
The alphanumeric system that gave the first delta variant its scientific name—B.1.617.2—is called Pango. It’s meant for researchers tracking small genetic changes to the virus. It doesn’t determine whether new lineages act differently in people, just whether they’re different on a molecular level. There are currently over 1,300 Pango lineages, 13 of which are considered part of the delta family.
The name delta, meanwhile, comes from the WHO system, which is meant to simplify genomics for the general public. It gives names to related covid samples if it believes they may be of particular interest. There are currently eight families with Greek letters, but until there’s evidence a new sublineage of the first delta strain is acting differently from its parents, the WHO considers them all to be delta.
“Delta plus” takes the WHO designation and mixes it up with Pango’s lineage information. It doesn’t mean the virus is more dangerous or more concerning.
“People get quite anxious when they see a new Pango name. But we should not be upset by the discovery of new variants. All the time, we see new variants popping up with no different behavior at all,” says Brito. “If we have evidence a new lineage is more threatening, WHO will give it a new name.”
Tracking evolution
“For a genomic scientist like me, I want to know what variations we’re seeing,” says Kelsey Florek, senior genomics and data scientist for the Wisconsin state public health lab. “For the greater public, it doesn’t really make a difference. Classifying them all as delta is sufficient for communicating with policy makers, public health, and the public.”
Fundamentally, viral evolution works like any other kind. As the virus spreads through the body, it makes copies of itself, which often have small mistakes and changes. Most of these are dead ends, but occasionally, a copy with a mistake replicates enough inside a person to spread to someone else.
As the virus spreads from person to person, it accumulates those small changes, allowing scientists to follow patterns of transmission—the same way we can look at human genomes and identify which people are related. But in a virus, most of those genetic changes have no impact on the way it actually affects individuals and communities.
Genomic scientists still need a way to track that viral evolution, though, both for basic science and to identify any changes in behavior as early as possible. That’s why they are keeping a close eye on patterns in delta, especially, since it’s spreading so rapidly. The Pango team continues to split descendants of the first delta lineage, B.1.617.2, into subcategories of related cases.
Until recently, it had registered 617.2 itself plus three “children,” called AY.1, AY.2, and AY.3. This week, the team decided to split those children into 12 families in order to better track small-scale local changes—hence the total of 13 delta variants. None of this means the virus itself has suddenly changed.
“Especially at the margins, with these emerging variants, you are splitting hairs,” says Duncan MacCannell, chief scientific officer of the CDC’s Office of Advanced Molecular Detection. “Depending on how those definitions are crafted and refined, the hairs can split in different ways.”

News
Does Space-Time Really Exist?
Is time something that flows — or just an illusion? Exploring space-time as either a fixed “block universe” or a dynamic fabric reveals deeper mysteries about existence, change, and the very nature of reality. [...]
Unlocking hidden soil microbes for new antibiotics
Most bacteria cannot be cultured in the lab-and that's been bad news for medicine. Many of our frontline antibiotics originated from microbes, yet as antibiotic resistance spreads and drug pipelines run dry, the soil [...]
By working together, cells can extend their senses beyond their direct environment
The story of the princess and the pea evokes an image of a highly sensitive young royal woman so refined, she can sense a pea under a stack of mattresses. When it comes to [...]
Overworked Brain Cells May Hold the Key to Parkinson’s
Scientists at Gladstone Institutes uncovered a surprising reason why dopamine-producing neurons, crucial for smooth body movements, die in Parkinson’s disease. In mice, when these neurons were kept overactive for weeks, they began to falter, [...]
Old tires find new life: Rubber particles strengthen superhydrophobic coatings against corrosion
Development of highly robust superhydrophobic anti-corrosion coating using recycled tire rubber particles. Superhydrophobic materials offer a strategy for developing marine anti-corrosion materials due to their low solid-liquid contact area and low surface energy. However, [...]
This implant could soon allow you to read minds
Mind reading: Long a science fiction fantasy, today an increasingly concrete scientific goal. Researchers at Stanford University have succeeded in decoding internal language in real time thanks to a brain implant and artificial intelligence. [...]
A New Weapon Against Cancer: Cold Plasma Destroys Hidden Tumor Cells
Cold plasma penetrates deep into tumors and attacks cancer cells. Short-lived molecules were identified as key drivers. Scientists at the Leibniz Institute for Plasma Science and Technology (INP), working with colleagues from Greifswald University Hospital and [...]
This Common Sleep Aid May Also Protect Your Brain From Alzheimer’s
Lemborexant and similar sleep medications show potential for treating tau-related disorders, including Alzheimer’s disease. New research from Washington University School of Medicine in St. Louis shows that a commonly used sleep medication can restore normal sleep patterns and [...]
Sugar-Coated Nanoparticles Boost Cancer Drug Efficacy
A team of researchers at the University of Mississippi has discovered that coating cancer treatment carrying nanoparticles in a sugar-like material increases their treatment efficacy. They reported their findings in Advanced Healthcare Materials. Over a tenth of breast [...]
Nanoparticle-Based Vaccine Shows Promise in Fighting Cancer
In a study published in OncoImmunology, researchers from the German Cancer Research Center and Heidelberg University have created a therapeutic vaccine that mobilizes the immune system to target cancer cells. The researchers demonstrated that virus peptides combined [...]
Quantitative imaging method reveals how cells rapidly sort and transport lipids
Lipids are difficult to detect with light microscopy. Using a new chemical labeling strategy, a Dresden-based team led by André Nadler at the Max Planck Institute of Molecular Cell Biology and Genetics (MPI-CBG) and [...]
Ancient DNA reveals cause of world’s first recorded pandemic
Scientists have confirmed that the Justinian Plague, the world’s first recorded pandemic, was caused by Yersinia pestis, the same bacterium behind the Black Death. Dating back some 1,500 years and long described in historical texts but [...]
“AI Is Not Intelligent at All” – Expert Warns of Worldwide Threat to Human Dignity
Opaque AI systems risk undermining human rights and dignity. Global cooperation is needed to ensure protection. The rise of artificial intelligence (AI) has changed how people interact, but it also poses a global risk to human [...]
Nanomotors: Where Are They Now?
First introduced in 2004, nanomotors have steadily advanced from a scientific curiosity to a practical technology with wide-ranging applications. This article explores the key developments, recent innovations, and major uses of nanomotors today. A [...]
Study Finds 95% of Tested Beers Contain Toxic “Forever Chemicals”
Researchers found PFAS in 95% of tested beers, with the highest levels linked to contaminated local water sources. Per- and polyfluoroalkyl substances (PFAS), better known as forever chemicals, are gaining notoriety for their ability [...]
Long COVID Symptoms Are Closer To A Stroke Or Parkinson’s Disease Than Fatigue
When most people get sick with COVID-19 today, they think of it as a brief illness, similar to a cold. However, for a large number of people, the illness doesn't end there. The World [...]