Researchers at the Harvard John A. Paulson School of Engineering and Applied Sciences (SEAS) have developed a new technique to squeeze infrared light into ultra-confined spaces, generating an intense, nanoscale antenna that could be used to detect single biomolecules. | |
The researchers harnessed the power of polaritons, particles that blur the distinction between light and matter. This ultra-confined light can be used to detect very small amounts of matter close to the polaritons. For example, many hazardous substances, such as formaldehyde, have an infrared signature that can be magnified by these antennas. The shape and size of the polaritons can also be tuned, paving the way to smart infrared detectors and biosensors. | |
The research is published in Science Advances (“Ultra-confined mid-infrared resonant phonon polaritons in van der Waals nanostructures”). |
“This work opens up a new frontier in nanophotonics,” said Federico Capasso, the Robert L. Wallace Professor of Applied Physics and Vinton Hayes Senior Research Fellow in Electrical Engineering, and senior author of the study. “By coupling light to atomic vibrations, we have concentrated light into nanodevices much smaller than its wavelength, giving us a new tool to detect and manipulate molecules.” | |
Polaritons are hybrid quantum mechanical particles, made up of a photon strongly coupled to vibrating atoms in a two-dimensional crystal. | |
“Our goal was to harness this strong interaction between light and matter and engineer polaritons to focus light in very small spaces,” said Michele Tamagnone, postdoctoral fellow in Applied Physics at SEAS and co-first author of the paper. |

Image Credit: Harvard SEAS
News This Week
Duke working on developing flu shot using new CoV vaccine technology
Researchers from Duke University are developing a flu shot with the new technology that was used for two coronavirus vaccines. Both the Pfizer-BioNTech and the Moderna shots use part of the virus's genetic code [...]
Long-acting injectable medicine as potential route to COVID-19 therapy
Researchers from the University of Liverpool have shown the potential of repurposing an existing and cheap drug into a long-acting injectable therapy that could be used to treat Covid-19. In a paper published in the journal Nanoscale, [...]
Superbug killer: New nanotech destroys bacteria and fungal cells
Researchers have developed a new superbug-destroying coating that could be used on wound dressings and implants to prevent and treat potentially deadly bacterial and fungal infections. The material is one of the thinnest antimicrobial [...]
US recommends ‘pause’ for J&J vaccine over clot reports
The U.S. is recommending a "pause" in administration of the single-dose Johnson & Johnson COVID-19 vaccine to investigate reports of potentially dangerous blood clots. In a joint statement Tuesday, the Centers for Disease Control [...]
S. African COVID variant better at bypassing Pfizer/BioNTech jab: Israeli study
The South African coronavirus variant is better at "breaking through" the defences of the Pfizer/BioNTech vaccine than other forms of the virus, Israeli experts said Sunday. However, one of the authors told AFP that [...]
Artificial intelligence to explore the biomolecular world
EPFL scientists have developed AI-powered nanosensors that let researchers track various kinds of biological molecules without disturbing them. The tiny world of biomolecules is rich in fascinating interactions between a plethora of different agents [...]
Why SARS-CoV-2 replicates better in the upper respiratory tract
A team of researchers from the Institute for Infectious Diseases (IFIK) at the University of Bern and the Federal Institute of Virology and Immunology (IVI) have assessed virus growth and activation of the cellular [...]
Brown University creates first wireless, implanted brain-computer interface
Researchers at Brown University have succeeded in creating the first wireless, implantable, rechargeable, long-term brain-computer interface. The wireless BCIs have been implanted in pigs and monkeys for over 13 months without issue, and human [...]
Leave A Comment