A team led by scientists at Georgia State University simulates the precise transition between the processes of DNA synthesis and proofreading
DNA replication is one of the most important processes in biology, responsible for ensuring that a cell’s genetic material is copied over to new cells efficiently during cell division. But what happens when there is a mistake?
Fortunately, replicative DNA polymerases—the cell’s replication molecular machines—are capable of proofreading the newly synthesized DNA and correcting mistakes made during the DNA replication process. These polymerases detect misincorporated DNA bases and transfer them to a specialized compartment inside of the polymerase to excise them.
If it weren’t for these versatile and efficient machines, the cell’s genetic material would be compromised, potentially leading to abnormal cellular functioning, impaired development, and diseases such as cancer. But just how mistakes are corrected while the polymerase synthesizes a new DNA strand hasn’t been fully understood.
Now, a team at Georgia State University has used the nation’s fastest supercomputer, the IBM AC922 Summit at the US Department of Energy’s (DOE’s) Oak Ridge National Laboratory (ORNL), to find the optimal transition path that a highly accurate bacterial DNA polymerase uses to switch between building and editing DNA. This optimal DNA path serves as a molecular highway, guiding the starting point of the DNA strand as it travels the large distance between the two sites where DNA is synthesized or excised. The work was published in the journal Nature Communications.
“We represented the path between these two—the polymerase and exonuclease states—as a series of replicas of the simulation system that were all optimized and sampled simultaneously,” said Ivaylo Ivanov, researcher at Georgia State University. “Applying path optimization methods to large macromolecular complexes was, until recently, computationally prohibitively expensive. Only with recent advances in GPU technology on massively parallel computing platforms like Summit did it become possible for us to sample the conformational ensemble along the optimal path.”
Image Credit: Ivaylo Ivanov, Georgia State University
Post by Amanda Scott, NA CEO. Follow her on twitter @tantriclens
Thanks to Heinz V. Hoenen. Follow him on twitter: @HeinzVHoenen

News
Cancer and AI – Can ChatGPT Be Trusted?
A study published in the Journal of The National Cancer Institute Cancer Spectrum delved into the increasing use of chatbots and artificial intelligence (AI) in providing cancer-related information. The researchers discovered that these digital resources accurately [...]
Breathing New Life: Oxygen Therapy Improves Heart Function in Long COVID Patients
A small trial has found that hyperbaric oxygen therapy (HBOT) may help restore proper heart function in patients with post-COVID syndrome, with participants in the HBOT group experiencing a significant increase in global longitudinal [...]
Wireless Brain-Spine Interface: A Leap Towards Reversing Paralysis
Summary: In a pioneering study, researchers designed a wireless brain-spine interface enabling a paralyzed man to walk naturally again. The ‘digital bridge’ comprises two electronic implants — one on the brain and another on the [...]
New study reveals a gel that promises to wipe out brain cancer for good
An anti-cancer gel promises to wipe out glioblastoma permanently, a feat that's never been accomplished by any drug or surgery. So what makes this gel so special? Scientists at Johns Hopkins University (JHU) have [...]
New production process for therapeutic nanovesicles
Particles known as extracellular vesicles play a vital role in communication between cells and in many cell functions. Released by cells into their environment, these “membrane particles” consist of a cellular membrane carrying a [...]
Could studying African killifish be the secret cure to sarcopenia?
The Australian Regenerative Medicine Institute (ARMI) at Monash University suggests that muscle wasting, known as sarcopenia, may be reversed in late-life The study utilized the African killifish as a model and found that muscles revert [...]
Virtual AI Radiologist: ChatGPT Passes Radiology Board Exam
The most recent version of ChatGPT, an AI chatbot developed for language interpretation and response generation, has successfully passed a radiology board-style exam, demonstrating both its potential and limitations, according to research studies published [...]
Harnessing Energy Waves: Smart Material Prototype Challenges Newton’s Laws of Motion
University of Missouri researchers designed a prototype of a small, lightweight active ‘metamaterial’ that can control the direction and intensity of energy waves. Professor Guoliang Huang of the University of Missouri has developed a [...]
Nanotechnology revolutionizes the way cancer-fighting T cells navigate and combat tumors
Vanderbilt researchers are bolstering the fight against cancer with technology that enhances the effectiveness of T cells that attack tumors. The cutting-edge research was recently published in the journal Science Immunology. Cancers co-opt both [...]
Molecular “Superpower” of Antibiotic-Resistant Bacteria Revealed in New Research
A species of ordinary gut bacteria that we all carry flourishes when the intestinal flora is knocked out by a course of antibiotics. Since the bacteria is naturally resistant to many antibiotics, it causes problems, particularly [...]
Human DNA Is All Over The Planet, And Scientists Are Worried
Every skin flake, hair follicle, eyelash, and spit drop cast from your body contains instructions written in a chemical code, one that is unique to you. According to a new study, technology has advanced [...]
Long COVID: The Invisible Consequence of Socioeconomic Inequality
A recent study conducted by the Universities of Southampton and Oxford reveals a strong correlation between the incidence of long COVID and the level of area-specific deprivation. It found that individuals from the most deprived regions are 46 [...]
Mutation Mystery: Unraveling the Secret Behind COVID-19’s Rapid Spread
Molecular modeling suggests structural consequences of an early protein mutation that promoted viral transmission. RIKEN researchers discovered that an early mutation (D614G) in the SARS-CoV-2 virus may have contributed to its rapid spread by altering the spike [...]
Protein nanoparticle vaccine with adjuvant improves immune response against influenza
A novel type of protein nanoparticle vaccine formulation containing influenza proteins and adjuvant to boost immune responses has provided complete protection against influenza viral challenges, according to a new study published by researchers in [...]
Decoding Long COVID: NIH Study Exposes the Inner Workings of Neurological Symptoms
A NIH study on twelve Long COVID patients found differences in immune cell profiles and autonomic dysfunction, contributing to the understanding of the condition and potentially leading to better diagnoses and new treatments. Twelve [...]
Pancreatic Cancer Vaccine Shows Promise in Small Trial
Using mRNA tailored to each patient’s tumor, the vaccine may have staved off the return of one of the deadliest forms of cancer in half of those who received it. Five years ago, a [...]