Researchers at the University of Southampton have developed a new way of using nanomaterials to identify and enrich skeletal stem cells—a discovery which could eventually lead to new treatments for major bone fractures and the repair of lost or damaged bone.

The researchers concluded their new technique is simpler and quicker than other methods and up to 50-500 times more effective at enriching stem cells.

The study, led by Professor of Musculoskeletal Science, Richard Oreffo and Professor Antonios Kanaras of the Quantum, Light and Matter Group in the School of Physics and Astronomy, is published in ACS Nano—an internationally recognized multidisciplinary journal.

In , the researchers used gold nanoparticles—tiny spherical particles made up of thousands of gold atoms—coated with oligonucleotides (strands of DNA), to optically detect the specific messenger RNA (mRNA) signatures of skeletal stem cells in bone marrow. When detection takes place, the nanoparticles release a fluorescent dye, making the stem cells distinguishable from other surrounding cells, under microscopic observation. The stem cells can then be separated using a sophisticated fluorescence cell sorting process.

Stem cells are cells that are not yet specialized and can develop to perform different functions. Identifying skeletal stems cells allows scientists to grow these cells in defined conditions to enable the growth and formation of bone and cartilage tissue—for example, to help mend broken bones.

Among the challenges posed by our aging population is the need for novel and cost-effective approaches to bone repair. With one in three women and one in five men at risk of osteoporotic fractures worldwide, the costs are significant, with bone fractures alone costing the European economy €17 billion and the US economy $20 billion annually.

Image Credit:   University of Southampton

Post by Amanda Scott, NA CEO.  Follow her on twitter @tantriclens

Thanks to Heinz V. Hoenen.  Follow him on twitter: @HeinzVHoenen

News

A New Cognitive Compartmentalization with Neural Implants

KEY POINTS Neuralink's demo introduces "cognitive compartmentalization," enabling simultaneous cognitive tasks. This signifies a potential expansion in human cognitive abilities, enhancing multitasking and creativity. Raises concerns about cognitive overload and the merging of physical [...]