Scientists from Nanyang Technological University, Singapore (NTU Singapore) have created a process that can upcycle most plastics into chemical ingredients useful for energy storage, using light-emitting diodes (LEDs) and a commercially available catalyst, all at room temperature. | |
The new process is very energy-efficient and can be easily powered by renewable energy in the future, unlike other heat-driven recycling processes like pyrolysis. This innovation overcomes the current challenges in recycling plastics such as polypropylene (PP), polyethylene (PE) and polystyrene (PS), which are typically incinerated or discarded in landfills. Globally, only nine per cent of plastics are recycled, and plastic pollution is growing at an alarming rate. | |
The biggest challenge of recycling these plastics is their inert carbon-carbon bonds, which are very stable and thus require a significant amount of energy to break. This bond is also the reason why these plastics are resistant to many chemicals and have relatively high melting points. | |
Currently, the only commercial way to recycle such plastics is through pyrolysis, which has high energy costs and generates large amounts of greenhouse emissions, making it cost-prohibitive given the lower value product of the resulting pyrolysis oil. Developed by Associate Professor Soo Han Sen, an expert in photocatalysis from NTU’s School of Chemistry, Chemical Engineering, and Biotechnology, the new method uses LEDs to activate and break down the inert carbon-carbon bonds in plastics with the help of a commercially available vanadium catalyst. | |
Published this week in the journal Chem (“Upcycling of non-biodegradable plastics by base metal photocatalysis”), the NTU method can upcycle a range of plastics, including PP, PE and PS. These plastics, together, account for over 75 per cent of global plastic waste. | |
In developing a green solution to the plastic waste problem, the team wanted to ensure that minimal extra carbon emissions are generated through the recycling of plastics, which are long chains of molecules containing carbon atoms. | |
Inventor Assoc Prof Soo said: “Our breakthrough not only provides a potential answer to the growing plastic waste problem, but it also reuses the carbon trapped in these plastics instead of releasing it into the atmosphere as greenhouse gases through incineration.” | |
How the plastics are broken down |
|
First, the plastics are dissolved or dispersed in the organic solvent known as dichloromethane, which is used to disperse the polymer chains so that they will be more accessible to the photocatalyst. The solution is then mixed with the catalyst and flowed through a series of transparent tubes where the LED light is shone on it. | |
The light provides the initial energy to break the carbon-carbon bonds in a two-step process with the help of the vanadium catalyst. The carbon-hydrogen bonds in the plastics are oxidised – making the bonds less stable and more reactive – after which the carbon-carbon bonds are broken down. | |
After separation from the solution, the resulting end products are chemical ingredients such as formic acid and benzoic acid, which can be used to make other chemicals employed in fuel cells and liquid organic hydrogen carriers (LOHCs). LOHCs are now being explored by the energy sector as they play critical roles in clean energy development, given their ability to store and transport hydrogen gas more safely. | |
Unlike current and other emerging technologies to recycle plastics such as pyrolysis, which uses a high-temperature process to melt and degrade the plastics into low-quality fuels, or carbon nanotubes and hydrogen, the new LED-driven method requires much less energy. | |
Prof Soo adds that their method is unique in that it can use sunlight or LEDs powered with electricity from renewable sources such as solar, wind or geothermal, to completely process and upcycle such a wide range of plastics. This can allow for clean and energy-efficient management of plastics in a circular economy and increase the recycling rate of plastics. | |
The process may also help Singapore to reduce the amount of plastic waste from being incinerated or landfilled, helping the country to meet its Zero-Waste Masterplan, where it aims to increase the overall recycling rate to 70 per cent by 2030 and reduce waste going to the Semakau landfill, estimated to run out of space by 2035. Singapore generates around 1 million tonnes of plastic waste annually and only six per cent of Singapore’s plastic waste is recycled. | |
This study is part of a bigger project, entitled SPRUCE: Sustainable Plastics RepUrposing for a Circular Economy, which also involves Professor Xin (Simba) Chang, Associate Dean (Research) from the Nanyang Business School and Associate Professor Md Saidul Islam from the School of Social Sciences. | |
The interdisciplinary team estimates that if Singapore can upcycle 80 per cent of its plastics, it could lead to at least a 2.1 million tonnes reduction in carbon dioxide emissions – about four per cent of the nation’s total greenhouse gas emissions. In addition, when plastics are upcycled into chemical feedstock, it reduces the need by the chemical industry to combust fossil fuels to produce chemical feedstock, further cutting down greenhouse gas emissions. | |
Based on the estimations by Prof Chang and other team members, the economic benefit of reducing carbon dioxide emissions is estimated to be S$41.40m per year while the estimated cost savings from avoiding landfill use is about S$41.35 million per year in Singapore. Plastic reuse and recycling are projected to generate a profitpool growth of as much as US$60 billion for the chemical industry globally. | |
Prof Chang, an expert in corporate finance, added, “Given that Singapore’s chemical industry accounts for about one-third of the manufacturing output in 2015, the integration of plastic upcycling technology into the industry has the potential to yield considerable positive economic and environmental impact.” | |
Sociology expert Assoc Prof Islam said: “This innovative approach — by transforming plastic waste into valuable resources like formic acid — not only reduces the burden of plastic pollution but also addresses the growing demand for sustainable chemicals. This contributes to a cleaner environment, enhances public health, and creates new employment opportunities, especially in research, development, and production sectors, thereby fostering economic growth with a shift towards circular economies.” |

News
Scientists Crack the 500-Million-Year-Old Code That Controls Your Immune System
A collaborative team from Penn Medicine and Penn Engineering has uncovered the mathematical principles behind a 500-million-year-old protein network that determines whether foreign materials are recognized as friend or foe. How does your body [...]
Team discovers how tiny parts of cells stay organized, new insights for blocking cancer growth
A team of international researchers led by scientists at City of Hope provides the most thorough account yet of an elusive target for cancer treatment. Published in Science Advances, the study suggests a complex signaling [...]
Nanomaterials in Ophthalmology: A Review
Eye diseases are becoming more common. In 2020, over 250 million people had mild vision problems, and 295 million experienced moderate to severe ocular conditions. In response, researchers are turning to nanotechnology and nanomaterials—tools that are transforming [...]
Natural Plant Extract Removes up to 90% of Microplastics From Water
Researchers found that natural polymers derived from okra and fenugreek are highly effective at removing microplastics from water. The same sticky substances that make okra slimy and give fenugreek its gel-like texture could help [...]
Instant coffee may damage your eyes, genetic study finds
A new genetic study shows that just one extra cup of instant coffee a day could significantly increase your risk of developing dry AMD, shedding fresh light on how our daily beverage choices may [...]
Nanoneedle patch offers painless alternative to traditional cancer biopsies
A patch containing tens of millions of microscopic nanoneedles could soon replace traditional biopsies, scientists have found. The patch offers a painless and less invasive alternative for millions of patients worldwide who undergo biopsies [...]
Small antibodies provide broad protection against SARS coronaviruses
Scientists have discovered a unique class of small antibodies that are strongly protective against a wide range of SARS coronaviruses, including SARS-CoV-1 and numerous early and recent SARS-CoV-2 variants. The unique antibodies target an [...]
Controlling This One Molecule Could Halt Alzheimer’s in Its Tracks
New research identifies the immune molecule STING as a driver of brain damage in Alzheimer’s. A new approach to Alzheimer’s disease has led to an exciting discovery that could help stop the devastating cognitive decline [...]
Cyborg tadpoles are helping us learn how brain development starts
How does our brain, which is capable of generating complex thoughts, actions and even self-reflection, grow out of essentially nothing? An experiment in tadpoles, in which an electronic implant was incorporated into a precursor [...]
Prime Editing: The Next Frontier in Genetic Medicine
By Dr. Chinta SidharthanReviewed by Benedette Cuffari, M.Sc. Discover how prime editing is redefining the future of medicine by offering highly precise, safe, and versatile DNA corrections, bringing hope for more effective treatments for genetic diseases [...]
Can scientists predict life longevity from a drop of blood?
Discover how a new epigenetic clock measures how fast you are really aging from just a drop of blood or saliva. A recent study published in the journal Nature Aging constructed an intrinsic capacity (IC) clock [...]
What is different about the NB.1.8.1 Covid variant?
For many of us, Covid-19 feels like a chapter we’ve closed – along with the days of PCR tests, mask mandates and daily case updates. But while life may feel back to normal, the [...]
Scientists discover single cell creatures can learn new behaviours
It was previously thought that learning behaviours only applied to animals with complex brain and nervous systems, but a new study has proven that this may also occur in individual cells. As a result, this new evidence may change how [...]
Virus which ’causes multiple organ failure’ found at popular Spanish holiday destination
British tourists planning trips to Spain have been warned after a deadly virus that can cause multiple organ failure has been detected in the country. The Foreign Office issued the alert on its dedicated website Travel [...]
Urgent health warning as dangerous new Covid virus from China triggers US outbreak
A dangerous new Covid variant from China is surging in California, health officials warn. The California Department of Public Health warned this week the highly contagious NB.1.8.1 strain has been detected in the state, making it the [...]
How the evolution of a single gene allowed the plague to adapt, prolonging the pandemics
Scientists have documented the way a single gene in the bacterium that causes bubonic plague, Yersinia pestis, allowed it to survive hundreds of years by adjusting its virulence and the length of time it [...]