Scientists have created a “living digital camera” that captures and stores images in DNA, the genetic code of all living things, reports a new study. The technique offers a novel approach to encoding digital information into biological material, an endeavor that has a host of potential future applications in computing and nanotechnology.
DNA, which stands for deoxyribonucleic acid, is a molecule that stores the genetic instructions for organisms using four nucleotides called adenine (A), thymine (T), guanine (G), and cytosine (C). In addition to providing a comprehensive guide to biological systems, the simple four-bit nature of DNA has attracted interest from scientists as a potential form of hardware for novel computing systems and data storage.
Now, researchers led by Cheng Kai Lim, a synthetic biologist at the National University of Singapore, have demonstrated that DNA can not only be used to take and store images, but that these pictures can later be retrieved via sequencing techniques.
By passing special 2D light through DNA samples, the researchers were able to create “a biological analogue to a digital camera” which they called BacCam, according to a study published last week in Nature Communications.
“The increasing integration between biological and digital interfaces has led to heightened interest in utilizing biological materials to store digital data, with the most promising one involving the storage of data within defined sequences of DNA that are created by de novo DNA synthesis,” said Lim and his colleagues in the study. “However, there is a lack of methods that can obviate the need for de novo DNA synthesis, which tends to be costly and inefficient.”
“Here, in this work, we detail a method of capturing 2-dimensional light patterns into DNA, by utilizing optogenetic circuits to record light exposure into DNA, encoding spatial locations with barcoding, and retrieving stored images via high-throughput next-generation sequencing,” the team said. “This work thus establishes a ‘living digital camera’, paving the way towards integrating biological systems with digital devices.”
Scientists have been ruminating on the computational potential of DNA for decades, and the market for applications of DNA storage are expected to grow in the coming years. At this point, most efforts along these lines involve in-vitro synthesis of DNA, which means that scientists make synthetic strands of genetic material that can be manipulated to store information. Though this process is well-tested, it is also expensive, complicated, and often riddled with errors, according to Lim and his colleagues.
“While there have been substantial advances in accelerating this process…DNA synthesis remains a bottleneck in the adoption of DNA as a data storage medium,” the team said in the study. “There is thus significant interest in developing ways of encoding information into DNA that can either supersede or circumvent DNA synthesis in its current form.”
To that end, Lim and his colleagues came up with a new technique that sidesteps the need to synthesize DNA by working with living cells from the bacteria species Escherichia coli that contain so-called “optogenetic” circuits capable of recording the presence or absence of light within DNA.
The researchers projected simple 96-bit images—including a smiley face and the word “BacCam”—into specific sites of DNA of the bacterial culture using blue light. The images were successfully stored into the DNA, and could be retrieved with near-perfect accuracy by sequencing the encoded strands. Moreover, the team was able to use red light to project a separate image on the same segments of DNA, demonstrating that multiple images could be captured, stored, and deciphered from a single genetic sample.
“To scale this workflow beyond a single wavelength of light, we incorporated an additional wavelength of light, doubling the amount of data that can be stored in a single, simultaneous capture and demonstrating the multiplexing potential of the system,” Lim and his colleagues said. “The results imply that the number of different images that can be stored in a [DNA] pool and retrieved in a single run is between 100 and 1000.”
“As the field of DNA data storage continues to progress, there is an increasing interest in bridging the interface between biological and digital systems,” the team concluded. “Our work showcases further applications of DNA data storage that recreate existing information capture devices in a biological form, providing the basis for continued innovation in information recording and storage.”

News
Johns Hopkins Researchers Uncover a New Way To Kill Cancer Cells
A new study reveals that blocking ribosomal RNA production rewires cancer cell behavior and could help treat genetically unstable tumors. Researchers at the Johns Hopkins Kimmel Cancer Center and the Department of Radiation Oncology and Molecular [...]
AI matches doctors in mapping lung tumors for radiation therapy
In radiation therapy, precision can save lives. Oncologists must carefully map the size and location of a tumor before delivering high-dose radiation to destroy cancer cells while sparing healthy tissue. But this process, called [...]
Scientists Finally “See” Key Protein That Controls Inflammation
Researchers used advanced microscopy to uncover important protein structures. For the first time, two important protein structures in the human body are being visualized, thanks in part to cutting-edge technology at the University of [...]
AI tool detects 9 types of dementia from a single brain scan
Mayo Clinic researchers have developed a new artificial intelligence (AI) tool that helps clinicians identify brain activity patterns linked to nine types of dementia, including Alzheimer's disease, using a single, widely available scan—a transformative [...]
Is plastic packaging putting more than just food on your plate?
New research reveals that common food packaging and utensils can shed microscopic plastics into our food, prompting urgent calls for stricter testing and updated regulations to protect public health. Beyond microplastics: The analysis intentionally [...]
Aging Spreads Through the Bloodstream
Summary: New research reveals that aging isn’t just a local cellular process—it can spread throughout the body via the bloodstream. A redox-sensitive protein called ReHMGB1, secreted by senescent cells, was found to trigger aging features [...]
AI and nanomedicine find rare biomarkers for prostrate cancer and atherosclerosis
Imagine a stadium packed with 75,000 fans, all wearing green and white jerseys—except one person in a solid green shirt. Finding that person would be tough. That's how hard it is for scientists to [...]
Are Pesticides Breeding the Next Pandemic? Experts Warn of Fungal Superbugs
Fungicides used in agriculture have been linked to an increase in resistance to antifungal drugs in both humans and animals. Fungal infections are on the rise, and two UC Davis infectious disease experts, Dr. George Thompson [...]
Scientists Crack the 500-Million-Year-Old Code That Controls Your Immune System
A collaborative team from Penn Medicine and Penn Engineering has uncovered the mathematical principles behind a 500-million-year-old protein network that determines whether foreign materials are recognized as friend or foe. How does your body [...]
Team discovers how tiny parts of cells stay organized, new insights for blocking cancer growth
A team of international researchers led by scientists at City of Hope provides the most thorough account yet of an elusive target for cancer treatment. Published in Science Advances, the study suggests a complex signaling [...]
Nanomaterials in Ophthalmology: A Review
Eye diseases are becoming more common. In 2020, over 250 million people had mild vision problems, and 295 million experienced moderate to severe ocular conditions. In response, researchers are turning to nanotechnology and nanomaterials—tools that are transforming [...]
Natural Plant Extract Removes up to 90% of Microplastics From Water
Researchers found that natural polymers derived from okra and fenugreek are highly effective at removing microplastics from water. The same sticky substances that make okra slimy and give fenugreek its gel-like texture could help [...]
Instant coffee may damage your eyes, genetic study finds
A new genetic study shows that just one extra cup of instant coffee a day could significantly increase your risk of developing dry AMD, shedding fresh light on how our daily beverage choices may [...]
Nanoneedle patch offers painless alternative to traditional cancer biopsies
A patch containing tens of millions of microscopic nanoneedles could soon replace traditional biopsies, scientists have found. The patch offers a painless and less invasive alternative for millions of patients worldwide who undergo biopsies [...]
Small antibodies provide broad protection against SARS coronaviruses
Scientists have discovered a unique class of small antibodies that are strongly protective against a wide range of SARS coronaviruses, including SARS-CoV-1 and numerous early and recent SARS-CoV-2 variants. The unique antibodies target an [...]
Controlling This One Molecule Could Halt Alzheimer’s in Its Tracks
New research identifies the immune molecule STING as a driver of brain damage in Alzheimer’s. A new approach to Alzheimer’s disease has led to an exciting discovery that could help stop the devastating cognitive decline [...]