Scientists have created a “living digital camera” that captures and stores images in DNA, the genetic code of all living things, reports a new study. The technique offers a novel approach to encoding digital information into biological material, an endeavor that has a host of potential future applications in computing and nanotechnology.
DNA, which stands for deoxyribonucleic acid, is a molecule that stores the genetic instructions for organisms using four nucleotides called adenine (A), thymine (T), guanine (G), and cytosine (C). In addition to providing a comprehensive guide to biological systems, the simple four-bit nature of DNA has attracted interest from scientists as a potential form of hardware for novel computing systems and data storage.
Now, researchers led by Cheng Kai Lim, a synthetic biologist at the National University of Singapore, have demonstrated that DNA can not only be used to take and store images, but that these pictures can later be retrieved via sequencing techniques.
By passing special 2D light through DNA samples, the researchers were able to create “a biological analogue to a digital camera” which they called BacCam, according to a study published last week in Nature Communications.
“The increasing integration between biological and digital interfaces has led to heightened interest in utilizing biological materials to store digital data, with the most promising one involving the storage of data within defined sequences of DNA that are created by de novo DNA synthesis,” said Lim and his colleagues in the study. “However, there is a lack of methods that can obviate the need for de novo DNA synthesis, which tends to be costly and inefficient.”
“Here, in this work, we detail a method of capturing 2-dimensional light patterns into DNA, by utilizing optogenetic circuits to record light exposure into DNA, encoding spatial locations with barcoding, and retrieving stored images via high-throughput next-generation sequencing,” the team said. “This work thus establishes a ‘living digital camera’, paving the way towards integrating biological systems with digital devices.”
Scientists have been ruminating on the computational potential of DNA for decades, and the market for applications of DNA storage are expected to grow in the coming years. At this point, most efforts along these lines involve in-vitro synthesis of DNA, which means that scientists make synthetic strands of genetic material that can be manipulated to store information. Though this process is well-tested, it is also expensive, complicated, and often riddled with errors, according to Lim and his colleagues.
“While there have been substantial advances in accelerating this process…DNA synthesis remains a bottleneck in the adoption of DNA as a data storage medium,” the team said in the study. “There is thus significant interest in developing ways of encoding information into DNA that can either supersede or circumvent DNA synthesis in its current form.”
To that end, Lim and his colleagues came up with a new technique that sidesteps the need to synthesize DNA by working with living cells from the bacteria species Escherichia coli that contain so-called “optogenetic” circuits capable of recording the presence or absence of light within DNA.
The researchers projected simple 96-bit images—including a smiley face and the word “BacCam”—into specific sites of DNA of the bacterial culture using blue light. The images were successfully stored into the DNA, and could be retrieved with near-perfect accuracy by sequencing the encoded strands. Moreover, the team was able to use red light to project a separate image on the same segments of DNA, demonstrating that multiple images could be captured, stored, and deciphered from a single genetic sample.
“To scale this workflow beyond a single wavelength of light, we incorporated an additional wavelength of light, doubling the amount of data that can be stored in a single, simultaneous capture and demonstrating the multiplexing potential of the system,” Lim and his colleagues said. “The results imply that the number of different images that can be stored in a [DNA] pool and retrieved in a single run is between 100 and 1000.”
“As the field of DNA data storage continues to progress, there is an increasing interest in bridging the interface between biological and digital systems,” the team concluded. “Our work showcases further applications of DNA data storage that recreate existing information capture devices in a biological form, providing the basis for continued innovation in information recording and storage.”
News
New nanomedicine wipes out leukemia in animal study
In a promising advance for cancer treatment, Northwestern University scientists have re-engineered the molecular structure of a common chemotherapy drug, making it dramatically more soluble and effective and less toxic. In the new study, [...]
Mystery Solved: Scientists Find Cause for Unexplained, Deadly Diseases
A study reveals that a protein called RPA is essential for maintaining chromosome stability by stimulating telomerase. New findings from the University of Wisconsin-Madison suggest that problems with a key protein that helps preserve chromosome stability [...]
Nanotech Blocks Infection and Speed Up Chronic Wound Recovery
A new nanotech-based formulation using quercetin and omega-3 fatty acids shows promise in halting bacterial biofilms and boosting skin cell repair. Scientists have developed a nanotechnology-based treatment to fight bacterial biofilms in wound infections. The [...]
Researchers propose five key questions for effective adoption of AI in clinical practice
While Artificial Intelligence (AI) can be a powerful tool that physicians can use to help diagnose their patients and has great potential to improve accuracy, efficiency and patient safety, it has its drawbacks. It [...]
Advancements and clinical translation of intelligent nanodrugs for breast cancer treatment
A comprehensive review in "Biofunct. Mater." meticulously details the most recent advancements and clinical translation of intelligent nanodrugs for breast cancer treatment. This paper presents an exhaustive overview of subtype-specific nanostrategies, the clinical benefits [...]
It’s Not “All in Your Head”: Scientists Develop Revolutionary Blood Test for Chronic Fatigue Syndrome
A 96% accurate blood test for ME/CFS could transform diagnosis and pave the way for future long COVID detection. Researchers from the University of East Anglia and Oxford Biodynamics have created a highly accurate [...]
How Far Can the Body Go? Scientists Find the Ultimate Limit of Human Endurance
Even the most elite endurance athletes can’t outrun biology. A new study finds that humans hit a metabolic ceiling at about 2.5 times their resting energy burn. When ultra-runners take on races that last [...]
World’s Rivers “Overdosing” on Human Antibiotics, Study Finds
Researchers estimate that approximately 8,500 tons of antibiotics enter river systems each year after passing through the human body and wastewater treatment processes. Rivers spanning millions of kilometers across the globe are contaminated with [...]
Yale Scientists Solve a Century-Old Brain Wave Mystery
Yale scientists traced gamma brain waves to thalamus-cortex interactions. The discovery could reveal how brain rhythms shape perception and disease. For more than a century, scientists have observed rhythmic waves of synchronized neuronal activity [...]
Can introducing peanuts early prevent allergies? Real-world data confirms it helps
New evidence from a large U.S. primary care network shows that early peanut introduction, endorsed in 2015 and 2017 guidelines, was followed by a marked decline in clinician-diagnosed peanut and overall food allergies among [...]
Nanoparticle blueprints reveal path to smarter medicines
Lipid nanoparticles (LNPs) are the delivery vehicles of modern medicine, carrying cancer drugs, gene therapies and vaccines into cells. Until recently, many scientists assumed that all LNPs followed more or less the same blueprint, [...]
How nanomedicine and AI are teaming up to tackle neurodegenerative diseases
When I first realized the scale of the challenge posed by neurodegenerative diseases, such as Alzheimer's, Parkinson's disease and amyotrophic lateral sclerosis (ALS), I felt simultaneously humbled and motivated. These disorders are not caused [...]
Self-Organizing Light Could Transform Computing and Communications
USC engineers have demonstrated a new kind of optical device that lets light organize its own route using the principles of thermodynamics. Instead of relying on switches or digital control, the light finds its own [...]
Groundbreaking New Way of Measuring Blood Pressure Could Save Thousands of Lives
A new method that improves the accuracy of interpreting blood pressure measurements taken at the ankle could be vital for individuals who are unable to have their blood pressure measured on the arm. A newly developed [...]
Scientist tackles key roadblock for AI in drug discovery
The drug development pipeline is a costly and lengthy process. Identifying high-quality "hit" compounds—those with high potency, selectivity, and favorable metabolic properties—at the earliest stages is important for reducing cost and accelerating the path [...]
Nanoplastics with environmental coatings can sneak past the skin’s defenses
Plastic is ubiquitous in the modern world, and it's notorious for taking a long time to completely break down in the environment - if it ever does. But even without breaking down completely, plastic [...]
									














