The method triggers immune responses that inhibit melanoma, triple-negative breast cancer, lung carcinoma, and ovarian cancer.
Cancer treatment vaccines have been in development since 2010, when the first was approved for prostate cancer, followed by another in 2015 for melanoma. While many therapeutic (rather than preventive) cancer vaccines have been researched since then, none have received approval. A major challenge in their development is identifying tumor antigens that are distinct enough from normal cells to trigger a strong immune response.
Researchers at Tufts University have now created a cancer vaccine designed to enhance the immune system's ability to recognize tumor antigens. This approach generates a powerful immune response and establishes long-term immunological memory, reducing the likelihood of tumor recurrence. Unlike traditional cancer vaccines that target specific antigens, this new vaccine utilizes a lysate—a mix of protein fragments derived from any solid tumor—eliminating the need to identify a single tumor-specific antigen.
The vaccine they produced worked against multiple solid tumors in animal models, including melanoma, triple-negative breast cancer, Lewis lung carcinoma, and clinically inoperable ovarian cancer.
Developed by a team led by Qiaobing Xu, professor of biomedical engineering, the method builds on earlier work expressing specific antigens for an enhanced immune response by making lipid nanoparticles that carry mRNA into the lymphatic system.
"We have significantly improved the cancer vaccine design by making it applicable to any solid tumor from which we can create a lysate, possibly even tumors of unknown origin, without having to select mRNA sequences, and then adding another component – called AHPC – that helps channel the protein fragments from the cancer cells into the immunological response pathway," said Xu.
How the Vaccine Works
Unlike traditional vaccines designed to prevent infectious diseases caused by bacteria or viruses, cancer vaccines work by stimulating the body's immune system to recognize and attack cancer cells. And unlike most vaccines against pathogens, they are designed to be therapeutic rather than preventive—acting to eliminate an existing disease. Some preventive cancer vaccines do exist, but they are generally targeted to viruses that are linked to cancers, such as HPV linked to cervical cancer.
The key to the increased potency of the new cancer vaccine lies in its ability to direct tumor-derived antigens into a cellular pathway that efficiently presents the antigens to the immune system. Think of the presentation as a kind of police lineup, where each antigen is presented for the immune system to decide if it can be considered a "suspect."
Rounding up the antigens and getting them into an antigen presenting cell like a macrophage or dendritic cell (the police stations, if we continue with the analogy) is generally an inefficient process for tumor antigens. This is where the Tufts research team applied a two-stage method to power up the process.
A Two-Stage Approach to Enhancing Immune Response
First, to make sure they round up all tumor proteins-of-interest, they modified the mix of tumor proteins with the AHPC molecule, which in turn recruits an enzyme to put a tag on the protein called a ubiquitin. It allows the cell to identify and process the protein into fragments for presentation to the immune system.
The researchers then packaged the AHPC-modified tumor proteins into tiny lipid (fat molecule) bubbles, specifically designed to home in on lymph nodes, where most of antigen presenting cells can be found.
Tested in animal models of melanoma, triple-negative breast cancer, Lewis lung carcinoma, and inoperable ovarian cancer, the vaccine elicited a strong response by cytotoxic T cells, which attack the growing tumors, suppressing further growth and metastasis.
"Fighting cancer has always been an arsenal approach," said Xu. "Adding cancer vaccines to surgical excision, chemotherapy, and other drugs used to enhance cytotoxic T cell activity could lead to improved patient responses and longer-term prevention of cancer recurrence."
Reference: "Antitumour vaccination via the targeted proteolysis of antigens isolated from tumour lysates" by Yu Zhao, Donghui Song, Zeyu Wang, Qingqing Huang, Fan Huang, Zhongfeng Ye, Douglas Wich, Mengting Chen, Jennifer Khirallah, Shuliang Gao, Yang Liu and Qiaobing Xu, 28 November 2024, Nature Biomedical Engineering.
DOI: 10.1038/s41551-024-01285-5
The study was funded by the National Institutes of Health.

News
Long COVID Symptoms Are Closer To A Stroke Or Parkinson’s Disease Than Fatigue
When most people get sick with COVID-19 today, they think of it as a brief illness, similar to a cold. However, for a large number of people, the illness doesn't end there. The World [...]
The world’s first AI Hospital, developed in China is transforming healthcare
Artificial Intelligence and its developments have had a revolutionary impact on society, and healthcare is not an exception. China has made massive strides in AI integrated healthcare, and continues to do so as AI [...]
Scientists Rewire Immune Cells To Supercharge Cancer-Fighting Power
Blocking a single protein boosts T cell metabolism and tumor-fighting strength. The discovery could lead to next-generation cancer immunotherapies. Scientists have identified a strategy to greatly enhance the cancer-fighting abilities of the immune system’s [...]
Scientists Discover 20 Percent of Human DNA Comes from a Mysterious Ancestor
Humans carry a complex genetic history that continues to reveal surprises. Scientists have found that 20% of our DNA may come from a mysterious ancestor, according to WP Tech. This discovery changes how we understand [...]
AI detects early prostate cancer missed by pathologists
Men assessed as healthy after a pathologist analyses their tissue sample may still have an early form of prostate cancer. Using AI, researchers at Uppsala University have been able to find subtle tissue changes [...]
The Rare Mutation That Makes People Immune to Viruses
Some people carry a rare mutation that makes them resistant to viruses. Now scientists have copied that effect with an experimental mRNA therapy that stopped both flu and COVID in animal trials — raising [...]
Nanopore technique for measuring DNA damage could improve cancer therapy and radiological emergency response
Scientists at the National Institute of Standards and Technology (NIST) have developed a new technology for measuring how radiation damages DNA molecules. This novel technique, which passes DNA through tiny openings called nanopores, detects [...]
AI Tool Shows Exactly When Genes Turn On and Off
Summary: Researchers have developed an AI-powered tool called chronODE that models how genes turn on and off during brain development. By combining mathematics, machine learning, and genomic data, the method identifies exact “switching points” that [...]
Your brain could get bigger – not smaller – as you age
recently asked myself if I’ll still have a healthy brain as I get older. I hold a professorship at a neurology department. Nevertheless, it is difficult for me to judge if a particular brain, [...]
Hidden Cost of Smart AI: 50× More CO₂ for a Single Question
Every time we ask an AI a question, it doesn’t just return an answer—it also burns energy and emits carbon dioxide. German researchers found that some “thinking” AI models, which generate long, step-by-step reasoning [...]
Genetically-engineered immune cells show promise for preventing organ rejection
A Medical University of South Carolina team reports in Frontiers in Immunology that it has engineered a new type of genetically modified immune cell that can precisely target and neutralize antibody-producing cells complicit in organ rejection. [...]
Building and breaking plastics with light: Chemists rethink plastic recycling
What if recycling plastics were as simple as flicking a switch? At TU/e, Assistant Professor Fabian Eisenreich is making that vision a reality by using LED light to both create and break down a [...]
Generative AI Designs Novel Antibiotics That Defeat Defiant Drug-Resistant Superbugs
Harnessing generative AI, MIT scientists have created groundbreaking antibiotics with unique membrane-targeting mechanisms, offering fresh hope against two of the world’s most formidable drug-resistant pathogens. With the help of artificial intelligence, MIT researchers have [...]
AI finds more breast tumors earlier than traditional double radiologist review
AI is detecting tumors more often and earlier in the Dutch breast cancer screening program. Those tumors can then be treated at an earlier stage. This has been demonstrated by researchers led by Radboud [...]
Lavender oil could speed recovery after brain surgery
A week of lavender-scented nights helped brain surgery patients sleep more deeply, shorten delirium, and feel calmer, pointing to a simple, natural aid for post-surgery care. A randomized controlled trial investigating the therapeutic impact [...]
Targeting Nanoparticles for Heart Repair
Scientists have engineered dual-membrane nanoparticles that home in on heart tissue after a heart attack, delivering regenerative molecules while evading the body’s immune defences. Myocardial infarction, better known as a heart attack, is a [...]