A new approach for cancer treatment involves the use of microalgal-derived nanoparticles. A recent review in Frontiers in Bioengineering and Biotechnology examines their potential as a sustainable and biocompatible solution.
Promise and Limitations
Nanoparticles (NPs), defined as particles of between one and 100 nanometers, possess unique physical, chemical, and biological properties that are not observed in bulk materials. Their enhanced surface area, quantum effects, and increased reactivity make them particularly valuable in drug delivery, imaging, and cancer therapeutics.
However, traditional synthesis methods often involve hazardous chemicals or energy-intensive processes, raising toxicity and environmental concerns that hinder their wider clinical adoption. To address this, researchers are increasingly turning to green synthesis, using biological systems to produce nanoparticles under milder, more environmentally friendly conditions.
Microalgae are a particularly attractive source. Rich in enzymes, bioactive compounds, and metabolites, microalgae can reduce metal ions into nanoparticles without toxic reagents or high temperatures. The resulting biogenic nanoparticles offer high biocompatibility and can be tailored to induce cytotoxicity in cancer cells while sparing healthy tissues.
Harnessing Microalgae for Nanoparticle Synthesis
The review assessed numerous studies that showcase how various microalgal species, including Chlorella, Spirulina, and Scenedesmus, have been used to synthesize metallic nanoparticles such as silver (AgNPs).
Typically, microalgal biomass is suspended in aqueous solutions of metal salts, commonly silver nitrate, and bioreduction is initiated through metabolic extracts or secreted compounds. A visible color change, often from clear to yellow or brown, signals successful nanoparticle formation.
To characterize these particles, researchers use techniques like transmission electron microscopy (TEM) to assess morphology, UV-visible spectroscopy for optical properties, energy-dispersive X-ray spectroscopy (EDX) for elemental analysis, and Fourier-transform infrared spectroscopy (FTIR) to evaluate surface chemistry and functional groups.
Microalgae like Dunaliella salina have also been employed to produce gold nanoparticles (AuNPs) with similarly impressive biomedical potential.
Such nanoparticles can form either intracellularly, via metal ion uptake and reduction inside the cells, or extracellularly, where secreted metabolites mediate reduction on cell surfaces or in the surrounding medium. This multi-pathway mechanism includes key stages: activation (reduction and nucleation), growth (particle aggregation), and termination (stabilization or biomineralization).
Tailoring Nanoparticle Properties for Cancer Therapy
The review focuses on how synthesis parameters, like temperature, reactant concentration, and the specific microalgal strain, can affect the size, shape, and surface charge of the synthesized nanoparticles.
Studies have shown that these characteristics directly influence biological activity and therapeutic efficacy. Those cited in the review demonstrate that microalgal nanoparticles can be fine-tuned for targeted cytotoxic effects against various cancer cell lines while exhibiting low toxicity in healthy cells.
The mechanism behind this is believed to involve several pathways, including the generation of reactive oxygen species (ROS), disruption of cancer cell membrane integrity, and the induction of apoptosis.
Due to their small size, nanoparticles can also take advantage of the enhanced permeability and retention (EPR) effect, enabling them to accumulate selectively in tumor tissues. Functionalizing the nanoparticle surface with targeting ligands or anticancer drugs further enhances specificity and improves therapeutic outcomes.
Opportunities and Ongoing Challenges
The review highlights several advantages of microalgal-based nanoparticle synthesis. These include sustainability, low production costs, scalability, and the ability to control physicochemical properties through natural capping agents, which help stabilize the nanoparticles and support their compatibility for biomedical applications.
The authors also highlight the opportunities for integrating synthetic biology and genetic engineering to enhance microalgal strains. By fine-tuning metabolic pathways, it may be possible to increase both the yield and quality of nanoparticles.
However, more research is still required to achieve consistent nanoparticle size and morphology, understand long-term biocompatibility, and establish standardized, reproducible production protocols. While in vitro studies have shown promising results, translating these findings into clinically viable therapies will require extensive in vivo testing and regulatory validation.
Journal Reference
Garlapati V.K., et al. (2025). Sustainable production of microalgal nanoparticles through green synthesis towards cancer treatment. Frontiers in Bioengineering and Biotechnology, 13, 1621876. DOI: 10.3389/fbioe.2025.1621876, https://www.frontiersin.org/journals/bioengineering-and-biotechnology/articles/10.3389/fbioe.2025.1621876/full
News
Scientists Unlock a New Way to Hear the Brain’s Hidden Language
Scientists can finally hear the brain’s quietest messages—unlocking the hidden code behind how neurons think, decide, and remember. Scientists have created a new protein that can capture the incoming chemical signals received by brain [...]
Does being infected or vaccinated first influence COVID-19 immunity?
A new study analyzing the immune response to COVID-19 in a Catalan cohort of health workers sheds light on an important question: does it matter whether a person was first infected or first vaccinated? [...]
We May Never Know if AI Is Conscious, Says Cambridge Philosopher
As claims about conscious AI grow louder, a Cambridge philosopher argues that we lack the evidence to know whether machines can truly be conscious, let alone morally significant. A philosopher at the University of [...]
AI Helped Scientists Stop a Virus With One Tiny Change
Using AI, researchers identified one tiny molecular interaction that viruses need to infect cells. Disrupting it stopped the virus before infection could begin. Washington State University scientists have uncovered a method to interfere with a key [...]
Deadly Hospital Fungus May Finally Have a Weakness
A deadly, drug-resistant hospital fungus may finally have a weakness—and scientists think they’ve found it. Researchers have identified a genetic process that could open the door to new treatments for a dangerous fungal infection [...]
Fever-Proof Bird Flu Variant Could Fuel the Next Pandemic
Bird flu viruses present a significant risk to humans because they can continue replicating at temperatures higher than a typical fever. Fever is one of the body’s main tools for slowing or stopping viral [...]
What could the future of nanoscience look like?
Society has a lot to thank for nanoscience. From improved health monitoring to reducing the size of electronics, scientists’ ability to delve deeper and better understand chemistry at the nanoscale has opened up numerous [...]
Scientists Melt Cancer’s Hidden “Power Hubs” and Stop Tumor Growth
Researchers discovered that in a rare kidney cancer, RNA builds droplet-like hubs that act as growth control centers inside tumor cells. By engineering a molecular switch to dissolve these hubs, they were able to halt cancer [...]
Platelet-inspired nanoparticles could improve treatment of inflammatory diseases
Scientists have developed platelet-inspired nanoparticles that deliver anti-inflammatory drugs directly to brain-computer interface implants, doubling their effectiveness. Scientists have found a way to improve the performance of brain-computer interface (BCI) electrodes by delivering anti-inflammatory drugs directly [...]
After 150 years, a new chapter in cancer therapy is finally beginning
For decades, researchers have been looking for ways to destroy cancer cells in a targeted manner without further weakening the body. But for many patients whose immune system is severely impaired by chemotherapy or radiation, [...]
Older chemical libraries show promise for fighting resistant strains of COVID-19 virus
SARS‑CoV‑2, the virus that causes COVID-19, continues to mutate, with some newer strains becoming less responsive to current antiviral treatments like Paxlovid. Now, University of California San Diego scientists and an international team of [...]
Lower doses of immunotherapy for skin cancer give better results, study suggests
According to a new study, lower doses of approved immunotherapy for malignant melanoma can give better results against tumors, while reducing side effects. This is reported by researchers at Karolinska Institutet in the Journal of the National [...]
Researchers highlight five pathways through which microplastics can harm the brain
Microplastics could be fueling neurodegenerative diseases like Alzheimer's and Parkinson's, with a new study highlighting five ways microplastics can trigger inflammation and damage in the brain. More than 57 million people live with dementia, [...]
Tiny Metal Nanodots Obliterate Cancer Cells While Largely Sparing Healthy Tissue
Scientists have developed tiny metal-oxide particles that push cancer cells past their stress limits while sparing healthy tissue. An international team led by RMIT University has developed tiny particles called nanodots, crafted from a metallic compound, [...]
Gold Nanoclusters Could Supercharge Quantum Computers
Researchers found that gold “super atoms” can behave like the atoms in top-tier quantum systems—only far easier to scale. These tiny clusters can be customized at the molecular level, offering a powerful, tunable foundation [...]
A single shot of HPV vaccine may be enough to fight cervical cancer, study finds
WASHINGTON -- A single HPV vaccination appears just as effective as two doses at preventing the viral infection that causes cervical cancer, researchers reported Wednesday. HPV, or human papillomavirus, is very common and spread [...]
















