In a paper recently printed in the journal ACS Applied Materials & Interfaces, to imitate the photonic reaction of squid skin, researchers sequenced, recombinantly produced, and self-assembled reflective proteins from Sepioteuthis. lessioniana into spherical nanoparticles by combining reflectin B1 with a click chemistry ligand.
Taking Inspiration from Cephalopods
Cephalopods (cuttlefish, squids and octopuses) are natural camouflage masters. They use metachrosis to adaptively regulate the morphology of dermal cells, iridophores and chromatophores to control body coloration as well as body patterns. Bragg reflectors, which utilize thin-film constructive interference and periodic spacing of photonic crystals, are frequently used in iridescent light-refractive and reflective materials.
Squids belonging to Loliginidae family, including S. lessioniana, the subject of this study, have the unusual ability to tune and control the internal construction and regularity of Bragg-like reflector platelets contained within iridophores, which are completely made of proteins known as reflectins. The consequent dynamic iridescence is a wavelength and angle-dependent reflection that produces a wide range of bright colors.
Earlier studies have shown that the phosphorylation/dephosphorylation of condensed reflectin nanoparticles in reflector platelets controls these adaptive photonic properties. Phosphorylation rapidly transmits negative charges to positively charged reflectins, leading to the neutralization of charge and reduction in nanoparticle size, and subsequently a blue shift in wavelength emission.
Controlling the Size of Reflectins can Control their Color
Due to their unique features, reflections have been utilized to generate structurally colored bio-photonic substrates. It has been recently reported that full-length reflectins can self-assemble into well-controlled nanoparticles and then be integrated into photonic coatings.
It was hypothesized that the color of coatings/films composed of recombinant reflectin nanoparticles could be controlled by neutralizing them into photonic structures and regulating their size.
Key Features of the Research
The development of reflectin-based nanoparticles was regulated for the first time in this study by presenting the DBCO-Sulfo-NHS ester and merely changing the post-purification dialysis parameters with ACN. The approach for conjugation and self-assembly was centered around fundamental colloidal chemistry and was carried out under specific conditions, including ambient pressure, physiological circumstances (pH 7.0) and room temperature.
The click chemistry ligand offered many advantages. The size of the nanoparticles could be controlled with quasi-monodispersity. The DBCO synthesized protein nanoparticles were click-chemistry set, allowing a wide range of ligand conjugates to change the photonic reactivity and surface chemistry.
The results showed that DCBO bounded SlRF-B1 can self-assemble into nanoparticles of diverse sizes with a regulated size distribution. The production of large particles also enabled the researchers to learn more about protein coalescence and the self-assembly process of reflectins.
Modulating the Desired Colors
The monolayer films with nanoparticle sizes ranging from 170 to 310 nm provided structural colors ranging from blue to near-infrared. The higher-order maximum did not obstruct the 270 nm nanoparticles red sample because it was in the UV area. When the size of nanoparticle was equal to the observable wavelength, single particle scattering properties were observed.
The higher-order resonance peak with greater optical captivity changed into the blue wavelength region for the coatings of 660 nm nanoparticle, hence red architectural coloration was not detected. A deep red color coating was achieved by combining 660 nm nanoparticles with coumarin 343X azide, a method that replicates the function of xanthommantin in squid chromatophores.
Advantages and Applications of the Developed Photonic Coatings
Coatings made with click chemistry immobilization remained durable at room temperature for more than a year without requiring special storage. The study was able to show time-resolved self-assembly of reflectin nanoparticles thanks to the single molecule ligand DBCO-Sulfo-NHS ester’s ability to trigger regulated nanoparticle development.
Overall, this research establishes a larger area for protein-based photonic nanostructures in optoelectronic sensors and displays, with the potential to be extended to other sectors such as nanocarriers for regulated drug administration.
Since the coatings can be tailored to reflect near-infrared light, it is possible for them to be helpful for commercial uses in window coatings in tropical environments, reducing infrared absorption and lowering the carbon footprint of air conditioning equipment.
News
Lipid nanoparticles discovered that can deliver mRNA directly into heart muscle cells
Cardiovascular disease continues to be the leading cause of death worldwide. But advances in heart-failure therapeutics have stalled, largely due to the difficulty of delivering treatments at the cellular level. Now, a UC Berkeley-led [...]
The basic mechanisms of visual attention emerged over 500 million years ago, study suggests
The brain does not need its sophisticated cortex to interpret the visual world. A new study published in PLOS Biology demonstrates that a much older structure, the superior colliculus, contains the necessary circuitry to perform the [...]
AI Is Overheating. This New Technology Could Be the Fix
Engineers have developed a passive evaporative cooling membrane that dramatically improves heat removal for electronics and data centers Engineers at the University of California San Diego have created an innovative cooling system designed to greatly enhance [...]
New nanomedicine wipes out leukemia in animal study
In a promising advance for cancer treatment, Northwestern University scientists have re-engineered the molecular structure of a common chemotherapy drug, making it dramatically more soluble and effective and less toxic. In the new study, [...]
Mystery Solved: Scientists Find Cause for Unexplained, Deadly Diseases
A study reveals that a protein called RPA is essential for maintaining chromosome stability by stimulating telomerase. New findings from the University of Wisconsin-Madison suggest that problems with a key protein that helps preserve chromosome stability [...]
Nanotech Blocks Infection and Speed Up Chronic Wound Recovery
A new nanotech-based formulation using quercetin and omega-3 fatty acids shows promise in halting bacterial biofilms and boosting skin cell repair. Scientists have developed a nanotechnology-based treatment to fight bacterial biofilms in wound infections. The [...]
Researchers propose five key questions for effective adoption of AI in clinical practice
While Artificial Intelligence (AI) can be a powerful tool that physicians can use to help diagnose their patients and has great potential to improve accuracy, efficiency and patient safety, it has its drawbacks. It [...]
Advancements and clinical translation of intelligent nanodrugs for breast cancer treatment
A comprehensive review in "Biofunct. Mater." meticulously details the most recent advancements and clinical translation of intelligent nanodrugs for breast cancer treatment. This paper presents an exhaustive overview of subtype-specific nanostrategies, the clinical benefits [...]
It’s Not “All in Your Head”: Scientists Develop Revolutionary Blood Test for Chronic Fatigue Syndrome
A 96% accurate blood test for ME/CFS could transform diagnosis and pave the way for future long COVID detection. Researchers from the University of East Anglia and Oxford Biodynamics have created a highly accurate [...]
How Far Can the Body Go? Scientists Find the Ultimate Limit of Human Endurance
Even the most elite endurance athletes can’t outrun biology. A new study finds that humans hit a metabolic ceiling at about 2.5 times their resting energy burn. When ultra-runners take on races that last [...]
World’s Rivers “Overdosing” on Human Antibiotics, Study Finds
Researchers estimate that approximately 8,500 tons of antibiotics enter river systems each year after passing through the human body and wastewater treatment processes. Rivers spanning millions of kilometers across the globe are contaminated with [...]
Yale Scientists Solve a Century-Old Brain Wave Mystery
Yale scientists traced gamma brain waves to thalamus-cortex interactions. The discovery could reveal how brain rhythms shape perception and disease. For more than a century, scientists have observed rhythmic waves of synchronized neuronal activity [...]
Can introducing peanuts early prevent allergies? Real-world data confirms it helps
New evidence from a large U.S. primary care network shows that early peanut introduction, endorsed in 2015 and 2017 guidelines, was followed by a marked decline in clinician-diagnosed peanut and overall food allergies among [...]
Nanoparticle blueprints reveal path to smarter medicines
Lipid nanoparticles (LNPs) are the delivery vehicles of modern medicine, carrying cancer drugs, gene therapies and vaccines into cells. Until recently, many scientists assumed that all LNPs followed more or less the same blueprint, [...]
How nanomedicine and AI are teaming up to tackle neurodegenerative diseases
When I first realized the scale of the challenge posed by neurodegenerative diseases, such as Alzheimer's, Parkinson's disease and amyotrophic lateral sclerosis (ALS), I felt simultaneously humbled and motivated. These disorders are not caused [...]
Self-Organizing Light Could Transform Computing and Communications
USC engineers have demonstrated a new kind of optical device that lets light organize its own route using the principles of thermodynamics. Instead of relying on switches or digital control, the light finds its own [...]















