In a paper recently printed in the journal ACS Applied Materials & Interfaces, to imitate the photonic reaction of squid skin, researchers sequenced, recombinantly produced, and self-assembled reflective proteins from Sepioteuthis. lessioniana into spherical nanoparticles by combining reflectin B1 with a click chemistry ligand.
Taking Inspiration from Cephalopods
Cephalopods (cuttlefish, squids and octopuses) are natural camouflage masters. They use metachrosis to adaptively regulate the morphology of dermal cells, iridophores and chromatophores to control body coloration as well as body patterns. Bragg reflectors, which utilize thin-film constructive interference and periodic spacing of photonic crystals, are frequently used in iridescent light-refractive and reflective materials.
Squids belonging to Loliginidae family, including S. lessioniana, the subject of this study, have the unusual ability to tune and control the internal construction and regularity of Bragg-like reflector platelets contained within iridophores, which are completely made of proteins known as reflectins. The consequent dynamic iridescence is a wavelength and angle-dependent reflection that produces a wide range of bright colors.
Earlier studies have shown that the phosphorylation/dephosphorylation of condensed reflectin nanoparticles in reflector platelets controls these adaptive photonic properties. Phosphorylation rapidly transmits negative charges to positively charged reflectins, leading to the neutralization of charge and reduction in nanoparticle size, and subsequently a blue shift in wavelength emission.
Controlling the Size of Reflectins can Control their Color
Due to their unique features, reflections have been utilized to generate structurally colored bio-photonic substrates. It has been recently reported that full-length reflectins can self-assemble into well-controlled nanoparticles and then be integrated into photonic coatings.
It was hypothesized that the color of coatings/films composed of recombinant reflectin nanoparticles could be controlled by neutralizing them into photonic structures and regulating their size.
Key Features of the Research
The development of reflectin-based nanoparticles was regulated for the first time in this study by presenting the DBCO-Sulfo-NHS ester and merely changing the post-purification dialysis parameters with ACN. The approach for conjugation and self-assembly was centered around fundamental colloidal chemistry and was carried out under specific conditions, including ambient pressure, physiological circumstances (pH 7.0) and room temperature.
The click chemistry ligand offered many advantages. The size of the nanoparticles could be controlled with quasi-monodispersity. The DBCO synthesized protein nanoparticles were click-chemistry set, allowing a wide range of ligand conjugates to change the photonic reactivity and surface chemistry.
The results showed that DCBO bounded SlRF-B1 can self-assemble into nanoparticles of diverse sizes with a regulated size distribution. The production of large particles also enabled the researchers to learn more about protein coalescence and the self-assembly process of reflectins.
Modulating the Desired Colors
The monolayer films with nanoparticle sizes ranging from 170 to 310 nm provided structural colors ranging from blue to near-infrared. The higher-order maximum did not obstruct the 270 nm nanoparticles red sample because it was in the UV area. When the size of nanoparticle was equal to the observable wavelength, single particle scattering properties were observed.
The higher-order resonance peak with greater optical captivity changed into the blue wavelength region for the coatings of 660 nm nanoparticle, hence red architectural coloration was not detected. A deep red color coating was achieved by combining 660 nm nanoparticles with coumarin 343X azide, a method that replicates the function of xanthommantin in squid chromatophores.
Advantages and Applications of the Developed Photonic Coatings
Coatings made with click chemistry immobilization remained durable at room temperature for more than a year without requiring special storage. The study was able to show time-resolved self-assembly of reflectin nanoparticles thanks to the single molecule ligand DBCO-Sulfo-NHS ester’s ability to trigger regulated nanoparticle development.
Overall, this research establishes a larger area for protein-based photonic nanostructures in optoelectronic sensors and displays, with the potential to be extended to other sectors such as nanocarriers for regulated drug administration.
Since the coatings can be tailored to reflect near-infrared light, it is possible for them to be helpful for commercial uses in window coatings in tropical environments, reducing infrared absorption and lowering the carbon footprint of air conditioning equipment.

News
Does Space-Time Really Exist?
Is time something that flows — or just an illusion? Exploring space-time as either a fixed “block universe” or a dynamic fabric reveals deeper mysteries about existence, change, and the very nature of reality. [...]
Unlocking hidden soil microbes for new antibiotics
Most bacteria cannot be cultured in the lab-and that's been bad news for medicine. Many of our frontline antibiotics originated from microbes, yet as antibiotic resistance spreads and drug pipelines run dry, the soil [...]
By working together, cells can extend their senses beyond their direct environment
The story of the princess and the pea evokes an image of a highly sensitive young royal woman so refined, she can sense a pea under a stack of mattresses. When it comes to [...]
Overworked Brain Cells May Hold the Key to Parkinson’s
Scientists at Gladstone Institutes uncovered a surprising reason why dopamine-producing neurons, crucial for smooth body movements, die in Parkinson’s disease. In mice, when these neurons were kept overactive for weeks, they began to falter, [...]
Old tires find new life: Rubber particles strengthen superhydrophobic coatings against corrosion
Development of highly robust superhydrophobic anti-corrosion coating using recycled tire rubber particles. Superhydrophobic materials offer a strategy for developing marine anti-corrosion materials due to their low solid-liquid contact area and low surface energy. However, [...]
This implant could soon allow you to read minds
Mind reading: Long a science fiction fantasy, today an increasingly concrete scientific goal. Researchers at Stanford University have succeeded in decoding internal language in real time thanks to a brain implant and artificial intelligence. [...]
A New Weapon Against Cancer: Cold Plasma Destroys Hidden Tumor Cells
Cold plasma penetrates deep into tumors and attacks cancer cells. Short-lived molecules were identified as key drivers. Scientists at the Leibniz Institute for Plasma Science and Technology (INP), working with colleagues from Greifswald University Hospital and [...]
This Common Sleep Aid May Also Protect Your Brain From Alzheimer’s
Lemborexant and similar sleep medications show potential for treating tau-related disorders, including Alzheimer’s disease. New research from Washington University School of Medicine in St. Louis shows that a commonly used sleep medication can restore normal sleep patterns and [...]
Sugar-Coated Nanoparticles Boost Cancer Drug Efficacy
A team of researchers at the University of Mississippi has discovered that coating cancer treatment carrying nanoparticles in a sugar-like material increases their treatment efficacy. They reported their findings in Advanced Healthcare Materials. Over a tenth of breast [...]
Nanoparticle-Based Vaccine Shows Promise in Fighting Cancer
In a study published in OncoImmunology, researchers from the German Cancer Research Center and Heidelberg University have created a therapeutic vaccine that mobilizes the immune system to target cancer cells. The researchers demonstrated that virus peptides combined [...]
Quantitative imaging method reveals how cells rapidly sort and transport lipids
Lipids are difficult to detect with light microscopy. Using a new chemical labeling strategy, a Dresden-based team led by André Nadler at the Max Planck Institute of Molecular Cell Biology and Genetics (MPI-CBG) and [...]
Ancient DNA reveals cause of world’s first recorded pandemic
Scientists have confirmed that the Justinian Plague, the world’s first recorded pandemic, was caused by Yersinia pestis, the same bacterium behind the Black Death. Dating back some 1,500 years and long described in historical texts but [...]
“AI Is Not Intelligent at All” – Expert Warns of Worldwide Threat to Human Dignity
Opaque AI systems risk undermining human rights and dignity. Global cooperation is needed to ensure protection. The rise of artificial intelligence (AI) has changed how people interact, but it also poses a global risk to human [...]
Nanomotors: Where Are They Now?
First introduced in 2004, nanomotors have steadily advanced from a scientific curiosity to a practical technology with wide-ranging applications. This article explores the key developments, recent innovations, and major uses of nanomotors today. A [...]
Study Finds 95% of Tested Beers Contain Toxic “Forever Chemicals”
Researchers found PFAS in 95% of tested beers, with the highest levels linked to contaminated local water sources. Per- and polyfluoroalkyl substances (PFAS), better known as forever chemicals, are gaining notoriety for their ability [...]
Long COVID Symptoms Are Closer To A Stroke Or Parkinson’s Disease Than Fatigue
When most people get sick with COVID-19 today, they think of it as a brief illness, similar to a cold. However, for a large number of people, the illness doesn't end there. The World [...]