| Microscopic materials made of clay designed by researchers at the University of Missouri could be key to the future of synthetic materials chemistry. By enabling scientists to produce chemical layers tailor-made to deliver specific tasks based on the goals of the individual researcher, these materials called nanoclays can be used in a wide variety of applications, including the medical field or environmental science. | |
| A fundamental part of the material is its electrically charged surface, said Gary Baker, co-principal investigator on the project and an associate professor in the Department of Chemistry. |
| “Imagine a koosh ball where the thousands of rubber strands radiating from the ball’s core each sport an electrically charged bead on the end,” Baker said. “It’s analogous to a magnet — positively charged things will stick to negatively charged things. For instance, positively charged nanoclays could attract a group of harmful fluorinated chemicals known as PFAS, or “forever chemicals” which are negatively charged. Or, by making the nanoclay negatively charged, it can stick to things such as heavy metal ions like cadmium, which are positively charged, and help remove them from a contaminated body of water.” | |
| In addition to the electrical charge, each nanoclay can be customized with different chemical components, like mixing and matching different parts. This makes them usable in the design of diagnostic sensors for biomedical imaging or explosive and ordnance detection. | |
| “Essentially, these nanoclays represent chemical building blocks designed with specific functions which are assembled into extremely thin, two-dimensional microscopic sheets — thinner than a strand of human DNA and 100,000 times thinner than a sheet of paper,” Baker said. “We can customize the function and shape of the chemical components presented at the surface of the nanoclay to make whatever we want to build. We’ve just exposed the tip of the iceberg for what these materials can do.” | |
| The rsearchers published their findings in ACS Applied Engineering Materials (“Surface Programmable Polycationic Nanoclay Supports Yielding 100,000 per Hour Turnover Frequencies for a Nanocatalyzed Canonical Nitroarene Reduction”). | |
| Two-dimensional materials are highly sought after because they can superficially coat the outside of a bulky object in a thin, conformal layer and introduce completely different surface properties than the object underneath. | |
| “By mixing and matching a few things like different ions or gold nanoparticles, we can quickly design chemistry that’s never existed before, and the more we tailor it, the more it opens a wider range of applications,” Baker said. |
| Source: University of Missouri |
News
Nanomedicine in 2026: Experts Predict the Year Ahead
Progress in nanomedicine is almost as fast as the science is small. Over the last year, we've seen an abundance of headlines covering medical R&D at the nanoscale: polymer-coated nanoparticles targeting ovarian cancer, Albumin recruiting nanoparticles for [...]
Lipid nanoparticles could unlock access for millions of autoimmune patients
Capstan Therapeutics scientists demonstrate that lipid nanoparticles can engineer CAR T cells within the body without laboratory cell manufacturing and ex vivo expansion. The method using targeted lipid nanoparticles (tLNPs) is designed to deliver [...]
The Brain’s Strange Way of Computing Could Explain Consciousness
Consciousness may emerge not from code, but from the way living brains physically compute. Discussions about consciousness often stall between two deeply rooted viewpoints. One is computational functionalism, which holds that cognition can be [...]
First breathing ‘lung-on-chip’ developed using genetically identical cells
Researchers at the Francis Crick Institute and AlveoliX have developed the first human lung-on-chip model using stem cells taken from only one person. These chips simulate breathing motions and lung disease in an individual, [...]
Cell Membranes May Act Like Tiny Power Generators
Living cells may generate electricity through the natural motion of their membranes. These fast electrical signals could play a role in how cells communicate and sense their surroundings. Scientists have proposed a new theoretical [...]
This Viral RNA Structure Could Lead to a Universal Antiviral Drug
Researchers identify a shared RNA-protein interaction that could lead to broad-spectrum antiviral treatments for enteroviruses. A new study from the University of Maryland, Baltimore County (UMBC), published in Nature Communications, explains how enteroviruses begin reproducing [...]
New study suggests a way to rejuvenate the immune system
Stimulating the liver to produce some of the signals of the thymus can reverse age-related declines in T-cell populations and enhance response to vaccination. As people age, their immune system function declines. T cell [...]
Nerve Damage Can Disrupt Immunity Across the Entire Body
A single nerve injury can quietly reshape the immune system across the entire body. Preclinical research from McGill University suggests that nerve injuries may lead to long-lasting changes in the immune system, and these [...]
Fake Science Is Growing Faster Than Legitimate Research, New Study Warns
New research reveals organized networks linking paper mills, intermediaries, and compromised academic journals Organized scientific fraud is becoming increasingly common, ranging from fabricated research to the buying and selling of authorship and citations, according [...]
Scientists Unlock a New Way to Hear the Brain’s Hidden Language
Scientists can finally hear the brain’s quietest messages—unlocking the hidden code behind how neurons think, decide, and remember. Scientists have created a new protein that can capture the incoming chemical signals received by brain [...]
Does being infected or vaccinated first influence COVID-19 immunity?
A new study analyzing the immune response to COVID-19 in a Catalan cohort of health workers sheds light on an important question: does it matter whether a person was first infected or first vaccinated? [...]
We May Never Know if AI Is Conscious, Says Cambridge Philosopher
As claims about conscious AI grow louder, a Cambridge philosopher argues that we lack the evidence to know whether machines can truly be conscious, let alone morally significant. A philosopher at the University of [...]
AI Helped Scientists Stop a Virus With One Tiny Change
Using AI, researchers identified one tiny molecular interaction that viruses need to infect cells. Disrupting it stopped the virus before infection could begin. Washington State University scientists have uncovered a method to interfere with a key [...]
Deadly Hospital Fungus May Finally Have a Weakness
A deadly, drug-resistant hospital fungus may finally have a weakness—and scientists think they’ve found it. Researchers have identified a genetic process that could open the door to new treatments for a dangerous fungal infection [...]
Fever-Proof Bird Flu Variant Could Fuel the Next Pandemic
Bird flu viruses present a significant risk to humans because they can continue replicating at temperatures higher than a typical fever. Fever is one of the body’s main tools for slowing or stopping viral [...]
What could the future of nanoscience look like?
Society has a lot to thank for nanoscience. From improved health monitoring to reducing the size of electronics, scientists’ ability to delve deeper and better understand chemistry at the nanoscale has opened up numerous [...]















