Researchers have derived a new wave equation, linking wave mechanics with the general theory of relativity and the arrow of time, offering solutions to long-standing physics debates and introducing applications for novel materials.
Researchers at Tampere University and the University of Eastern Finland have reached a milestone in a study where they derived a new kind of wave equation, which applies to accelerating waves. The novel formalism has turned out to be an unexpectedly fertile ground for examining wave mechanics, with direct connections between accelerating waves, the general theory of relativity, as well as the arrow of time.
Light Interaction With Matter
Whenever light interacts with matter, light appears to slow down. This is not a new observation and standard wave mechanics can describe most of these daily phenomena.
However, at the boundary, the incident light must experience an acceleration. So far, this has not been accounted for.
“Basically, I found a very neat way to derive the standard wave equation in 1+1 dimensions. The only assumption I needed was that the speed of the wave is constant. Then I thought to myself: what if it’s not always constant? This turned out to be a really good question,” says Assistant Professor Matias Koivurova from the University of Eastern Finland.
By assuming that the speed of a wave can vary with time, the researchers were able to write down what they call an accelerating wave equation. While writing down the equation was simple, solving it was another matter.
“The solution didn’t seem to make any sense. Then it dawned on me that it behaves in ways that are reminiscent of relativistic effects,” Koivurova recounts.
Working together with the Theoretical Optics and Photonics group, led by Associate Professor Marco Ornigotti from Tampere University, the researchers finally made progress. To obtain solutions that behave as expected, they needed a constant reference speed – the vacuum speed of light. According to Koivurova, everything started to make sense after realizing that. What followed was an investigation of the surprisingly far-reaching consequences of formalism.
No Hope for a Time Machine?
In a breakthrough result, the researchers showed that in terms of accelerating waves, there is a well-defined direction of time; a so-called ‘arrow of time.’ This is because the accelerating wave equation only allows solutions where time flows forward, but never backward.
“Usually, the direction of time comes from thermodynamics, where an increasing entropy shows which way time is moving,” Koivurova says.
However, if the flow of time were to reverse, then entropy would start to decrease until the system reached its lowest entropy state. Then entropy would be free to increase again.
This is the difference between ‘macroscopic’ and ‘microscopic’ arrows of time: while entropy defines the direction of time for large systems unambiguously, nothing fixes the direction of time for single particles.
“Yet, we expect single particles to behave as if they have a fixed direction of time!” Koivurova says.
Since the accelerating wave equation can be derived from geometrical considerations, it is general, accounting for all wave behavior in the world. This in turn means that the fixed direction of time is also a rather general property of nature.
Relativity Triumphs Over the Controversy
Another property of the framework is that it can be used to analytically model waves that are continuous everywhere, even across interfaces. This in turn has some important implications for the conservation of energy and momentum.
“There is this very famous debate in physics, which is called the Abraham–Minkowski controversy. The controversy is that when light enters a medium, what happens to its momentum? Minkowski said that the momentum increases, while Abraham insisted that it decreases,” Ornigotti explains.
Notably, there is experimental evidence supporting both sides.
“What we have shown, is that from the point of view of the wave, nothing happens to its momentum. In other words, the momentum of the wave is conserved,” Koivurova continues.
What allows the conservation of momentum are relativistic effects. “We found that we can ascribe a ‘proper time’ to the wave, which is entirely analogous to the proper time in the general theory of relativity,” Ornigotti says.
Since the wave experiences a time that is different from the laboratory time, the researchers found that accelerating waves also experience time dilation and length contraction. Koivurova notes that it is precisely the length contraction that makes it seem like the momentum of the wave is not conserved inside a material medium.
Exotic Applications
The new approach is equivalent to the standard formulation in most problems, but it has an important extension: time-varying materials. Inside time-varying media light will experience sudden and uniform changes in the material properties. The waves inside such materials are not solutions to the standard wave equation.
This is where the accelerating wave equation comes into the picture. It allows the researchers to analytically model situations that were only numerically accessible before.
Such situations include an exotic hypothetical material called disordered photonic time crystal. Recent theoretical investigations have shown that a wave propagating inside the said material will slow down exponentially, while also increasing exponentially in energy.
“Our formalism shows that the observed change in the energy of the pulse is due to a curved space-time the pulse experiences. In such cases, energy conservation is locally violated,” Ornigotti says.
The research has wide-reaching implications, from everyday optical effects to laboratory tests of the general theory of relativity, while giving an idea of why time has a preferred direction.
Reference: “Time-varying media, relativity, and the arrow of time” by Matias Koivurova, Charles W. Robson and Marco Ornigotti, 19 October 2023, Optica.
DOI: 10.1364/OPTICA.494630
News
Lipid nanoparticles discovered that can deliver mRNA directly into heart muscle cells
Cardiovascular disease continues to be the leading cause of death worldwide. But advances in heart-failure therapeutics have stalled, largely due to the difficulty of delivering treatments at the cellular level. Now, a UC Berkeley-led [...]
The basic mechanisms of visual attention emerged over 500 million years ago, study suggests
The brain does not need its sophisticated cortex to interpret the visual world. A new study published in PLOS Biology demonstrates that a much older structure, the superior colliculus, contains the necessary circuitry to perform the [...]
AI Is Overheating. This New Technology Could Be the Fix
Engineers have developed a passive evaporative cooling membrane that dramatically improves heat removal for electronics and data centers Engineers at the University of California San Diego have created an innovative cooling system designed to greatly enhance [...]
New nanomedicine wipes out leukemia in animal study
In a promising advance for cancer treatment, Northwestern University scientists have re-engineered the molecular structure of a common chemotherapy drug, making it dramatically more soluble and effective and less toxic. In the new study, [...]
Mystery Solved: Scientists Find Cause for Unexplained, Deadly Diseases
A study reveals that a protein called RPA is essential for maintaining chromosome stability by stimulating telomerase. New findings from the University of Wisconsin-Madison suggest that problems with a key protein that helps preserve chromosome stability [...]
Nanotech Blocks Infection and Speed Up Chronic Wound Recovery
A new nanotech-based formulation using quercetin and omega-3 fatty acids shows promise in halting bacterial biofilms and boosting skin cell repair. Scientists have developed a nanotechnology-based treatment to fight bacterial biofilms in wound infections. The [...]
Researchers propose five key questions for effective adoption of AI in clinical practice
While Artificial Intelligence (AI) can be a powerful tool that physicians can use to help diagnose their patients and has great potential to improve accuracy, efficiency and patient safety, it has its drawbacks. It [...]
Advancements and clinical translation of intelligent nanodrugs for breast cancer treatment
A comprehensive review in "Biofunct. Mater." meticulously details the most recent advancements and clinical translation of intelligent nanodrugs for breast cancer treatment. This paper presents an exhaustive overview of subtype-specific nanostrategies, the clinical benefits [...]
It’s Not “All in Your Head”: Scientists Develop Revolutionary Blood Test for Chronic Fatigue Syndrome
A 96% accurate blood test for ME/CFS could transform diagnosis and pave the way for future long COVID detection. Researchers from the University of East Anglia and Oxford Biodynamics have created a highly accurate [...]
How Far Can the Body Go? Scientists Find the Ultimate Limit of Human Endurance
Even the most elite endurance athletes can’t outrun biology. A new study finds that humans hit a metabolic ceiling at about 2.5 times their resting energy burn. When ultra-runners take on races that last [...]
World’s Rivers “Overdosing” on Human Antibiotics, Study Finds
Researchers estimate that approximately 8,500 tons of antibiotics enter river systems each year after passing through the human body and wastewater treatment processes. Rivers spanning millions of kilometers across the globe are contaminated with [...]
Yale Scientists Solve a Century-Old Brain Wave Mystery
Yale scientists traced gamma brain waves to thalamus-cortex interactions. The discovery could reveal how brain rhythms shape perception and disease. For more than a century, scientists have observed rhythmic waves of synchronized neuronal activity [...]
Can introducing peanuts early prevent allergies? Real-world data confirms it helps
New evidence from a large U.S. primary care network shows that early peanut introduction, endorsed in 2015 and 2017 guidelines, was followed by a marked decline in clinician-diagnosed peanut and overall food allergies among [...]
Nanoparticle blueprints reveal path to smarter medicines
Lipid nanoparticles (LNPs) are the delivery vehicles of modern medicine, carrying cancer drugs, gene therapies and vaccines into cells. Until recently, many scientists assumed that all LNPs followed more or less the same blueprint, [...]
How nanomedicine and AI are teaming up to tackle neurodegenerative diseases
When I first realized the scale of the challenge posed by neurodegenerative diseases, such as Alzheimer's, Parkinson's disease and amyotrophic lateral sclerosis (ALS), I felt simultaneously humbled and motivated. These disorders are not caused [...]
Self-Organizing Light Could Transform Computing and Communications
USC engineers have demonstrated a new kind of optical device that lets light organize its own route using the principles of thermodynamics. Instead of relying on switches or digital control, the light finds its own [...]















