A concept known as “wave-particle duality” famously applies to light. But it also applies to all matter — including you.
In 1905, the 26-year-old Albert Einstein proposed something quite outrageous: that light could be both wave or particle. This idea is just as weird as it sounds. How could something be two things that are so different? A particle is small and confined to a tiny space, while a wave is something that spreads out. Particles hit one another and scatter about. Waves refract and diffract. They add on or cancel each other out in superpositions. These are very different behaviors.
Hidden in translation
The problem with this wave-particle duality is that language has issues accommodating both behaviors coming from the same object. After all, language is built of our experiences and emotions, of the things we see and feel. We do not directly see or feel photons. We probe into their nature with experimental set-ups, collecting information through monitors, counters, and the like.
This brings us to Bohr’s model of the atom, which we discussed a couple of weeks back. His model pins electrons orbiting the atomic nucleus to specific orbits. The electron can only be in one of these orbits, as if it is set on a train track. It can jump between orbits, but it cannot be in between them. How does that work, exactly? To Bohr, it was an open question. The answer came from a remarkable feat of physical intuition, and it sparked a revolution in our understanding of the world.
The wave nature of a baseball
In 1924, Louis de Broglie, a historian turned physicist, showed quite spectacularly that the electron’s step-like orbits in Bohr’s atomic model are easily understood if the electron is pictured as consisting of standing waves surrounding the nucleus. These are waves much like the ones we see when we shake a rope that is attached at the other end. In the case of the rope, the standing wave pattern appears due to the constructive and destructive interference between waves going and coming back along the rope. For the electron, the standing waves appear for the same reason, but now the electron wave closes on itself like an ouroboros, the mythic serpent that swallows its own tail. When we shake our rope more vigorously, the pattern of standing waves displays more peaks. An electron at higher orbits corresponds to a standing wave with more peaks.
De Broglie offered a formula known as de Broglie wavelength to compute the wavelength of any matter with mass m moving at velocity v. He associated wavelength λ to m and v — and thus to momentum p = mv — according to the relation λ = h/p, where h is Planck’s constant. The formula can be refined for objects moving close to the speed of light.
As an example, a baseball moving at 70 km per hour has an associated de Broglie wavelength of about 22 billionths of a trillionth of a trillionth of a centimeter (or 2.2 x 10-32 cm). Clearly, not much is waving there, and we are justified in picturing the baseball as a solid object. In contrast, an electron moving at one-tenth the speed of light has a wavelength about half the size of a hydrogen atom (more precisely, half the size of the most probable distance between an atomic nucleus and an electron at its lowest energy state).
While the wave nature of a moving baseball is irrelevant to understanding its behavior, the wave nature of the electron is essential to understand its behavior in atoms. The crucial point, though, is that everything waves. An electron, a baseball, and you.
Quantum biology
De Broglie’s remarkable idea has been confirmed in countless experiments. In college physics classes we demonstrate how electrons passing through a crystal diffract like waves, with superpositions creating dark and bright spots due to destructive and constructive interference. Anton Zeilinger, who shared the physics Nobel prize this year, has championed diffracting ever-larger objects, from the soccer-ball-shaped C60 molecule (with 60 carbon atoms) to biological macromolecules.
The question is how life under such a diffraction experiment would behave at the quantum level. Quantum biology is a new frontier, one where the wave-particle duality plays a key role in the behavior of living beings. Can life survive quantum superposition? Can quantum physics tell us something about the nature of life?

News
DREAM complex could hold key to fighting cancer and living longer
DNA may be the stuff of life, but if it isn't repaired in our bodies on a regular basis, it can lead to diseases that can cause some pretty unpleasant types of death. DNA [...]
A Promising New Pathway in the Battle Against Aggressive Prostate Cancer
Neuronal Molecule Makes Prostate Cancer More Aggressive Researchers discover a potential therapeutic avenue against an aggressive form of prostate cancer. Prostate cancer is the second most common cancer and the second leading cause of [...]
Nasal Vaccines: Stopping the COVID-19 Virus Before It Reaches the Lungs
The Pfizer-BioNTech and Moderna mRNA vaccines have played a large role in preventing deaths and severe infections from COVID-19. But researchers are still in the process of developing alternative approaches to vaccines to improve [...]
NASA Tracking a Huge, Growing Anomaly in Earth’s Magnetic Field – with video
NASA is actively monitoring a strange anomaly in Earth's magnetic field: a giant region of lower magnetic intensity in the skies above the planet, stretching out between South America and southwest Africa. This vast, developing [...]
New, Better Models Show How Infectious Diseases Like COVID-19 Spread
Infectious diseases such as COVID-19 can spread rapidly across the globe. Models that can predict how such diseases spread will strengthen national surveillance systems and improve public health decision-making. The COVID-19 pandemic has emphasized the [...]
Human Antibodies Discovered That Can Block Multiple Coronaviruses Including COVID-19
Results from a Scripps Research and UNC team pave the way for a vaccine and therapeutic antibodies that could be stockpiled to fight future coronavirus pandemics. A team of scientists from Scripps Research and [...]
Nanotechnology could be used to treat lymphedema
The human body is made up of thousands of tiny lymphatic vessels that ferry white blood cells and proteins around the body, like a superhighway of the immune system. It's remarkably efficient, but if [...]
DNA Nanotechnology Tools – From Design to Applications
Suite of DNA nanotechnology devices engineered to overcome specific bottlenecks in the development of new therapies, diagnostics, and understanding of molecular structures. DNA nanostructures with their potential for cell and tissue permeability, biocompatibility, and [...]
Regenerating bone with deer antler stem cells
Scientists from a collection of Chinese research institutions collaborated on a study of organ regeneration in mammals, finding deer antler blastema progenitor cells are a possible source of conserved regeneration cells in higher vertebrates. [...]
AI Takes On Cancer: Analysis of Mutations Could Lead to Improved Therapy
Cancer is a complex and diverse disease, and its range of associated mutations is vast. The combination of these genomic changes in an individual is referred to as their “mutational landscape.” These landscapes vary [...]
Exposing tumours to bacteria converts immune cells to cancer killers
New research on inflammation could lead to better treatments to improve outcomes for people with advanced or previously untreatable cancers. Introducing bacteria to a tumour’s microenvironment creates a state of acute inflammation that triggers [...]
Smart nanotechnology for more accurate delivery of insulin
More efficient and longer lasting glucose-responsive insulin that eliminates the need for people with type 1 diabetes to measure their glucose levels could be a step closer thanks to a Monash University-led project. Published [...]
Efficiently Harvesting Rare Earth Elements From Wastewater Using Exotic Bacteria
The novel strains of cyanobacteria exhibit a fast and efficient “biosorption” of rare earth elements, making recycling possible. Rare earth elements (REEs) are a set of 17 metallic elements that possess similar chemical properties. [...]
Resisting Treatment: Cancer Cells Shrink or Super-Size To Survive
A new approach to image analysis has uncovered how cancer cells manipulate their size as a means of resisting treatment. Researchers have discovered that cancer cells are capable of either shrinking or super-size themselves [...]
New Research Explains Why Children Avoid Severe COVID-19 Symptoms
According to new research, children exhibit a robust initial immune response to the coronavirus, however, they are unable to transfer this response to long-lasting memory T cells like adults do. Researchers led by scientists [...]
Scientists Unravel Protein Map of Mitochondria
A new study sheds light on the organization of proteins within mitochondria. Mitochondria, the “powerhouses” of cells, play a crucial role in the energy production of organisms and are involved in various metabolic and [...]