The use of light to produce transient phases in quantum materials is fast becoming a novel way to engineer new properties in them, such as the generation of superconductivity or nanoscale topological defects. However, visualizing the growth of a new phase in a solid is not easy, due in-part to the wide range of spatial and time scales involved in the process. | |
Although in the last two decades scientists have explained light-induced phase transitions by invoking nanoscale dynamics, real space images have not yet been produced and, thus, no one has seen them. | |
In the new study published in Nature Physics (“Ultrafast X-ray imaging of the light-induced phase transition in VO2“), ICFO researchers Allan S. Johnson and Daniel Pérez-Salinas, led by former ICFO Prof. Simon Wall, in collaboration with colleagues from Aarhus University, Sogang University, Vanderbilt University, the Max Born Institute, the Diamond Light Source, ALBA Synchrotron, Utrecht University, and the Pohang Accelerator Laboratory, have pioneered a new imaging method that allows the capture of the light-induced phase transition in vanadium oxide (VO2) with high spatial and temporal resolution. |
The new technique implemented by the researchers is based on coherent X-ray hyperspectral imaging at a free electron laser, which has allowed them to visualize and better understand, at the nanoscale, the insulator-to-metal phase transition in this very well-known quantum material. | |
The crystal VO2 has been widely used in to study light-induced phase transitions. It was the first material to have its solid-solid transition tracked by time-resolved X-ray diffraction and its electronic nature was studied by using for the first time ultrafast X-ray absorption techniques. At room temperature, VO2 is in the insulating phase. However, if light is applied to the material, it is possible to break the dimers of the vanadium ion pairs and drive the transition from an insulating to a metallic phase. | |
In their experiment, the authors of the study prepared thin samples of VO2 with a gold mask to define the field of view. Then, the samples were taken to the X-ray Free Electron Laser facility at the Pohang Accelerator Laboratory, where an optical laser pulse induced the transient phase, before being probed by an ultrafast X-ray laser pulse. A camera captured the scattered X-rays, and the coherent scattering patterns were converted into images by using two different approaches: Fourier Transform Holography (FTH) and Coherent Diffractive Imaging (CDI). Images were taken at a range of time delays and X-ray wavelengths to build up a movie of the process with 150 femtosecond time resolution and 50 nm spatial resolution, but also with full hyperspectral information. |
The surprising role of the pressure |
|
The new methodology allowed the researchers to better understand the dynamics of the phase transition in VO2. They found that pressure plays a much larger role in light-induced phase transitions than previously expected or assumed. | |
“We saw that the transient phases aren’t nearly as exotic as people had believed! Instead of a truly non-equilibrium phase, what we saw was that we had been misled by the fact that the ultrafast transition intrinsically leads to giant internal pressures in the sample millions of times higher than atmospheric. This pressure changes the material properties and takes time to relax, making it seem like there was a transient phase” says Allan Johnson, postdoctoral researcher at ICFO. “Using our imaging method, we saw that, at least in this case, there was no link between the picosecond dynamics that we did see and any nanoscale changes or exotics phases. So, it looks like some of those conclusions will have to be revisited”. | |
To identify the role played by the pressure in the process, it was crucial to use the hyperspectral image. “By combining imaging and spectroscopy into one great image, we are able to retrieve much more information that permits us to actually see detailed features and decipher exactly where they come from,” continues Johnson. “This was essential to look at each part of our crystal and determine whether it was a normal or an exotic out-of-equilibrium phase-and with this information we were able to determine that during the phase transitions all the regions of our crystal were the same, except for the pressure”. | |
Challenging research |
|
One of the main challenges the researchers faced during the experiment was to ensure that the crystal sample of VO2 returned to its original starting phase each time and after being illuminated by the laser. To guarantee that this would occur, they conducted preliminary experiments at synchrotrons where they took several crystal samples and repeatedly shone the laser on them to test their capacity to recover back to their original state. | |
The second challenge resided in having access to an X-Ray free electron laser, large research facilities where the time windows to conduct the experiments are very competitive and in-demand because there are only a few in the world. “We had to spend two weeks in quarantine in South Korea due to the COVID-19 restrictions before we got our one shot of just five days to make the experiment work, so that was an intense time” Johnson recalls. | |
Although the researchers describe the present work as fundamental research, the potential applications of this technique could be diverse, since they could “look at polarons moving inside catalytic materials, try imaging superconductivity itself, or even help us understand novel nanotechnologies by viewing and imaging inside nanoscale devices” concludes Johnson. |

News
Unlocking hidden soil microbes for new antibiotics
Most bacteria cannot be cultured in the lab-and that's been bad news for medicine. Many of our frontline antibiotics originated from microbes, yet as antibiotic resistance spreads and drug pipelines run dry, the soil [...]
By working together, cells can extend their senses beyond their direct environment
The story of the princess and the pea evokes an image of a highly sensitive young royal woman so refined, she can sense a pea under a stack of mattresses. When it comes to [...]
Overworked Brain Cells May Hold the Key to Parkinson’s
Scientists at Gladstone Institutes uncovered a surprising reason why dopamine-producing neurons, crucial for smooth body movements, die in Parkinson’s disease. In mice, when these neurons were kept overactive for weeks, they began to falter, [...]
Old tires find new life: Rubber particles strengthen superhydrophobic coatings against corrosion
Development of highly robust superhydrophobic anti-corrosion coating using recycled tire rubber particles. Superhydrophobic materials offer a strategy for developing marine anti-corrosion materials due to their low solid-liquid contact area and low surface energy. However, [...]
This implant could soon allow you to read minds
Mind reading: Long a science fiction fantasy, today an increasingly concrete scientific goal. Researchers at Stanford University have succeeded in decoding internal language in real time thanks to a brain implant and artificial intelligence. [...]
A New Weapon Against Cancer: Cold Plasma Destroys Hidden Tumor Cells
Cold plasma penetrates deep into tumors and attacks cancer cells. Short-lived molecules were identified as key drivers. Scientists at the Leibniz Institute for Plasma Science and Technology (INP), working with colleagues from Greifswald University Hospital and [...]
This Common Sleep Aid May Also Protect Your Brain From Alzheimer’s
Lemborexant and similar sleep medications show potential for treating tau-related disorders, including Alzheimer’s disease. New research from Washington University School of Medicine in St. Louis shows that a commonly used sleep medication can restore normal sleep patterns and [...]
Sugar-Coated Nanoparticles Boost Cancer Drug Efficacy
A team of researchers at the University of Mississippi has discovered that coating cancer treatment carrying nanoparticles in a sugar-like material increases their treatment efficacy. They reported their findings in Advanced Healthcare Materials. Over a tenth of breast [...]
Nanoparticle-Based Vaccine Shows Promise in Fighting Cancer
In a study published in OncoImmunology, researchers from the German Cancer Research Center and Heidelberg University have created a therapeutic vaccine that mobilizes the immune system to target cancer cells. The researchers demonstrated that virus peptides combined [...]
Quantitative imaging method reveals how cells rapidly sort and transport lipids
Lipids are difficult to detect with light microscopy. Using a new chemical labeling strategy, a Dresden-based team led by André Nadler at the Max Planck Institute of Molecular Cell Biology and Genetics (MPI-CBG) and [...]
Ancient DNA reveals cause of world’s first recorded pandemic
Scientists have confirmed that the Justinian Plague, the world’s first recorded pandemic, was caused by Yersinia pestis, the same bacterium behind the Black Death. Dating back some 1,500 years and long described in historical texts but [...]
“AI Is Not Intelligent at All” – Expert Warns of Worldwide Threat to Human Dignity
Opaque AI systems risk undermining human rights and dignity. Global cooperation is needed to ensure protection. The rise of artificial intelligence (AI) has changed how people interact, but it also poses a global risk to human [...]
Nanomotors: Where Are They Now?
First introduced in 2004, nanomotors have steadily advanced from a scientific curiosity to a practical technology with wide-ranging applications. This article explores the key developments, recent innovations, and major uses of nanomotors today. A [...]
Study Finds 95% of Tested Beers Contain Toxic “Forever Chemicals”
Researchers found PFAS in 95% of tested beers, with the highest levels linked to contaminated local water sources. Per- and polyfluoroalkyl substances (PFAS), better known as forever chemicals, are gaining notoriety for their ability [...]
Long COVID Symptoms Are Closer To A Stroke Or Parkinson’s Disease Than Fatigue
When most people get sick with COVID-19 today, they think of it as a brief illness, similar to a cold. However, for a large number of people, the illness doesn't end there. The World [...]
The world’s first AI Hospital, developed in China is transforming healthcare
Artificial Intelligence and its developments have had a revolutionary impact on society, and healthcare is not an exception. China has made massive strides in AI integrated healthcare, and continues to do so as AI [...]