Ultrasensitive nanoscale optical probes have been created by scientists from UC Santa Cruz, to observe the bioelectric activity of neurons and other excitable cells.

This innovative readout technology could allow researchers to analyze how neural circuits operate at a scale like never before, by observing large numbers of individual neurons at the same time. It could also pave the way for high-bandwidth brain-machine interfaces with drastically increased functionality and precision.

Traditionally, the electrical activity of neurons is monitored with the help of microelectrode arrays. However, these components are challenging to implement at a large scale and provide limited spatial resolution.

According to Ali Yanik, assistant professor of electrical and computer engineering at UCSC’s Baskin School of Engineering, the electronic wiring needed for readout is a key limitation of microelectrodes.

Image Credit:  C. Lagattuta

Read more at azonano.com

News This Week

Walking with atoms

Ever since it was proposed that atoms are building blocks of the world, scientists have been trying to understand how and why they bond to each other. Be it a molecule (which is a [...]

Illuminating the world of nanoparticles

Scientists at the Okinawa Institute of Science and Technology Graduate University (OIST) have developed a light-based device that can act as a biosensor, detecting biological substances in materials; for example, harmful pathogens in food [...]

Self-driving microrobots

Most synthetic materials, including those in battery electrodes, polymer membranes, and catalysts, degrade over time because they don't have internal repair mechanisms. If you could distribute autonomous microrobots within these materials, then you could [...]