Ultrasensitive nanoscale optical probes have been created by scientists from UC Santa Cruz, to observe the bioelectric activity of neurons and other excitable cells.

This innovative readout technology could allow researchers to analyze how neural circuits operate at a scale like never before, by observing large numbers of individual neurons at the same time. It could also pave the way for high-bandwidth brain-machine interfaces with drastically increased functionality and precision.

Traditionally, the electrical activity of neurons is monitored with the help of microelectrode arrays. However, these components are challenging to implement at a large scale and provide limited spatial resolution.

According to Ali Yanik, assistant professor of electrical and computer engineering at UCSC’s Baskin School of Engineering, the electronic wiring needed for readout is a key limitation of microelectrodes.

Image Credit:  C. Lagattuta

Read more at azonano.com

News This Week

New Adjustments to Hyperspectral Microscopy of Nanomaterials

Hyperspectral microscopy is an advanced visualization technique that combines hyperspectral imaging with state-of-the-art optics and computer software to enable rapid identification of nanomaterials. Since hyperspectral datacubes are large, their acquisition is complicated and time-consuming. [...]

Through the quantum looking glass

An ultrathin invention could make future computing, sensing and encryption technologies remarkably smaller and more powerful by helping scientists control a strange but useful phenomenon of quantum mechanics, according to new research recently published [...]