New nano building block takes a bow

Boron nitride nanotubes are primed to become effective building blocks for next-generation composite and polymer materials based on a new discovery at Rice University – and a previous one.

Scientists at known-for-nano Rice have found a way to enhance a unique class of nanotubes using a chemical process pioneered at the university. The Rice lab of chemist Angel Martí took advantage of the Billups-Birch reaction process to enhance boron nitride nanotubes.
The work is described in the American Chemical Society journal ACS Applied Nano Materials (“Chemical Decoration of Boron Nitride Nanotubes Using the Billups-Birch Reaction: Toward Enhanced Thermostable Reinforced Polymer and Ceramic Nanocomposites”).

Boron nitride nanotubes, like their carbon cousins, are rolled sheets of hexagonal arrays. Unlike carbon nanotubes, they’re electrically insulating hybrids made of alternating boron and nitrogen atoms.

Insulating nanotubes that can be functionalized will be a valuable building block for nanoengineering projects, Martí said. “Carbon nanotubes have outstanding properties, but you can only get them in semiconducting or metallic conducting types,” he said. “Boron nitride nanotubes are complementary materials that can fill that gap.”

Until now, these nanotubes have steadfastly resisted functionalization, the “decorating” of structures with chemical additives that allows them to be customized for applications. The very properties that give boron nitride nanotubes strength and stability, especially at high temperatures, also make them hard to modify for their use in the production of advanced materials.

But the Billups-Birch reaction developed by Rice Professor Emeritus of Chemistry Edward Billups, which frees electrons to bind with other atoms, allowed Martí and lead author Carlos de los Reyes to give the electrically inert boron nitride nanotubes a negative charge.
That, in turn, opened them up to functionalization with other small molecules, including aliphatic carbon chains.

“Functionalizing the nanotubes modifies or tunes their properties,” Martí said. “When they’re pristine they are dispersible in water, but once we attach these alkyl chains, they are extremely hydrophobic (water-avoiding). Then, if you put them in very hydrophobic solvents like those with long-chain hydrocarbons, they are more dispersible than their pristine form.

Read more at nanowerk.com

Image Credit:  Martí Research Group

News This Week

Scientists Use Light to Control Nanobots

If nanotechnology has one clear image in the collective pop-culture consciousness, it is that of nanorobots, nanoscale machines capable of performing mechanical functions. When considering the potential of such a technology, the more astute may [...]

10 Steps to Adopting Artificial Intelligence in Your Business

Artificial intelligence (AI) is clearly a growing force in the technology industry. Chatbots and virtual assistants are becoming a key part of new products, and robots are taking center stage at conferences and showing [...]

Arguing the Pros and Cons of Artificial Intelligence in Healthcare

In what seems like the blink of an eye, mentions of artificial intelligence have become ubiquitous in the healthcare industry. From deep learning algorithms that can read CT scans faster than humans to natural [...]

International Conference On Nanomedicine And Nanobiotechnology – ICONAN Rome 2018

The International Conference On Nanomedicine And Nanobiotechnology is an annual event. It hosts high-profile plenary speakers, world-class researchers, oral and poster presentations, workshops, sponsor exhibits and afterworks. It is a great opportunity to share [...]

Australian Scientists Develop Nanotechnology To Purify Water

SYDNEY, (UrduPoint / Pakistan Point News, app - 14th Sep, 2018 ) :Scientists in Australia have developed a ground-breaking new way to strip impurities from waste water, with the research set to have massive [...]

A new scientific field: Quantum metamaterials

Two teams of scientists from the Technion-Israel Institute of Technology have collaborated to conduct groundbreaking research leading to the development of a new and innovative scientific field: Quantum Metamaterials. The findings are presented [...]

Using biosensors to deliver personalized doses of antibiotics

A team of eight EPFL students has come up with a portable biosensor that can measure the amount of vancomycin in a patient's blood stream, enabling doctors to better control the dosage and reduce [...]

Transparent high-resolution EEG array allows brain imaging

Researchers have developed a see-through, dual-layered, mesh EEG device which is capable of measuring the electrical activity of individual neurons… Researchers from Boston Children’s Hospital and Northeastern University developed a ‘see-through’ EEG device to [...]

2018-05-22T08:37:51+00:00

Leave A Comment