Scientists at UNSW Sydney have created a new material that could change the way human tissue can be grown in the lab and used in medical procedures.
There are also human-made hydrogels that are used in a broad range of commodity products ranging from food and cosmetics to contact lenses and absorbent materials, and more recently in medical research to seal wounds and replace damaged tissue. While they might function adequately as space fillers that encourage tissue growth, synthetic hydrogels fall short in recreating the complex properties of real human tissue.
But in a research paper published in Nature Communications, scientists from UNSW describe how a new lab-made hydrogel behaves like natural tissue, with a number of surprising qualities that have implications for medical, food and manufacturing technology.
Associate Professor Kris Kilian from UNSW’s School of Materials Science & Engineering and School of Chemistry says the hydrogel material is made from very simple, short peptides, which are the building blocks of proteins.
“The material is bioactive, which means that encapsulated cells behave as if they are living in natural tissue,” A/Prof. Kilian says.
“At the same time, the material is antimicrobial, meaning that it will prevent bacterial infections. This combination lands it in the sweet spot for materials that might be useful in medicine. The material is also self-healing, which means that it will reform after being squished, fractured, or after being expelled from a syringe. This makes it ideal for 3D bioprinting, or as an injectable material for medicine.”
Surprise discovery in lockdown
Ashley Nguyen, a Ph.D. student in the UNSW School of Chemistry and first author on the paper, made this discovery during the COVID19 lockdown using computer simulations. Nguyen was looking for molecules that self-assemble—where they spontaneously arrange themselves without human intervention—and stumbled upon the concept of “tryptophan zippers.” These are short chains of amino acids with multiple tryptophans that act as a zipper to promote self-assembly, which have been dubbed “Trpzip.”
“I was excited to identify a unique peptide sequence using computational simulations that might form a hydrogel,” says Nguyen.
“After we returned to the lab, I synthesized the top candidate and was thrilled to see it actually form a gel.”
Nguyen says the discovery of this hydrogel has the potential to be an ethical alternative to the widely used natural materials.
“Natural hydrogels are used all over in society—from food processing to cosmetics—but require harvest from animals which poses ethical concerns,” she says.
“Also, animal-derived materials are problematic for use in humans because of the negative immune response that occurs. With Trpzip, we have a synthetic material that not only shows potential in many areas where natural materials are currently used, but also could outperform them in others, such as clinical research.”
Real world results
To test the viability of Trpzip in biomedical research, A/Prof. Kilian’s team partnered with researcher Dr. Shafagh Waters in the School of Biomedical Sciences at UNSW Sydney, who uses Matrigel—a hydrogel harvested from mouse tumors—for the culture of patient tissue in her research.
“Matrigel has some disadvantages in research use because every batch is different. A chemically defined alternative could be cheaper and more uniform, which would prove highly beneficial to biomedical research,” says Dr. Waters.
A/Prof Kilian notes that the natural materials business is a billion-dollar industry and says the team is keen to explore pathways to commercialization.
“We think that Trpzip hydrogels and materials like it will provide a more uniform and cost-effective alternative to animal-derived products. It would be a tremendous outcome if our material reduced the number of animals used in scientific research.”
The next phase of research will involve partnering with industry and clinical scientists to test the utility of Trpzip gels in tissue culture and explore applications that highlight the unique dynamic characteristics like 3D bioprinting and stem cell delivery.
More information: Ashley K. Nguyen et al, Hierarchical assembly of tryptophan zipper peptides into stress-relaxing bioactive hydrogels, Nature Communications (2023). DOI: 10.1038/s41467-023-41907-1
Journal information: Nature Communications
News
Lockdowns prematurely aged teenagers’ brains, study suggests
Teenage girls' brains may have prematurely aged by up to four years during the Covid pandemic, an American study suggests. Adolescent boys weren't immune either with their brain's also showing signs of undue wear [...]
Long COVID Still a Mystery: Routine Labs Show No Reliable Biomarkers
Routine lab tests are not reliable for diagnosing Long COVID, according to a new study. The research found that no clinical lab values could serve as biomarkers, highlighting the need to focus on symptoms [...]
Tiny magnetic robots could treat bleeds in the brain
Researchers have created nanoscale robots which could be used to manage bleeds in the brain caused by aneurysms. The development could enable precise, relatively low-risk treatment of brain aneurysms, which cause around 500,000 deaths globally [...]
Turning Mosquito Spit Into a Weapon Against the West Nile Virus and Other Deadly Diseases
Anita Saraf investigates mosquito saliva to understand how viruses like dengue and West Nile are transmitted, using mass spectrometry to identify potential targets for vaccines and treatments. You might guess it’d be tough to [...]
Ethics in Nanomedicine: Key Issues and Principles
Nanomedicine, a branch of nanotechnology, is revolutionizing healthcare by enabling the manipulation of materials at the nanoscale to diagnose, treat, and prevent diseases. Unlike traditional treatments, nanoparticles (NPs) are highly precise in targeting diseased [...]
A call for robust H5N1 influenza preparedness and response
As the global threat of H5N1 influenza looms with outbreaks across species and continents including the U.S., three international vaccine and public health experts say it is time to fully resource and support a [...]
Mucosal COVID-19 boosters outperform mRNA shots in preventing upper airway infections
In a recent study published in Nature Immunology, a team of researchers from the United States used non-human primate models to compare the protection conferred by an intramuscular booster dose of the bivalent messenger ribonucleic acid [...]
How Space Travel Really Changes Astronauts – From the Inside Out
International team reveals previously unknown effects on physiology that could shape the future of long-duration space missions. Researchers have discovered significant changes in the gut microbiome due to spaceflight, which affects host physiology and [...]
Breakthrough in blood stem cell development offers hope for leukemia and bone marrow failure
Melbourne researchers have made a world first breakthrough into creating blood stem cells that closely resemble those in the human body. And the discovery could soon lead to personalized treatments for children with leukemia [...]
Scientists Develop Game-Changing Needle-Free COVID-19 Intranasal Vaccine
A new mucosal COVID-19 vaccine poised to revolutionize the delivery process is especially beneficial for those with a fear of needles. A next-generation COVID-19 mucosal vaccine is set to be a game-changer not only when delivering [...]
Scientists Develop All-in-One Solution To Catch and Destroy “Forever Chemicals”
A new water treatment system developed by UBC researchers efficiently removes and destroys PFAS pollutants using a dual-action catalyst, offering a sustainable and cost-effective solution for water purification challenges. Chemical engineers at the University of [...]
New method accelerates drug discovery from years to months
Researchers from the University of Cincinnati College of Medicine and Cincinnati Children's Hospital have found a new method to increase both speed and success rates in drug discovery. The study, published Aug. 30 in [...]
A new smart mask analyzes your breath to monitor your health
Your breath can give away a lot about you. Each exhalation contains all sorts of compounds, including possible biomarkers for disease or lung conditions, that could give doctors a valuable insight into your health. [...]
Study reveals the role of blood clotting in COVID-19
In a study that reshapes what we know about COVID-19 and its most perplexing symptoms, scientists have discovered that the blood coagulation protein fibrin causes the unusual clotting and inflammation that have become hallmarks [...]
A Novel Cancer Vaccine Combining Nano-11 and ADU-S100
In a recent article published in npj Vaccines, researchers detailed the development of a novel cancer vaccine that combines a plant-derived nanoparticle adjuvant, Nano-11, with a clinically tested STING agonist, ADU-S100. The primary objective was [...]
AI spots cancer and viral infections with nanoscale precision
Researchers have developed an artificial intelligence which can differentiate cancer cells from normal cells, as well as detect the very early stages of viral infection inside cells. The findings, published today in a study [...]