The new test could help identify which patients are most likely to benefit from new Alzheimer’s drugs.
A newly developed blood test for Alzheimer’s disease not only helps confirm the presence of the condition but also provides information about how far the disease has progressed, according to research from Washington University School of Medicine in St. Louis and Lund University in Sweden.
While several Alzheimer’s blood tests are already available, including two based on technology licensed from Washington University, those existing tests mainly assist in diagnosing the disease in people showing cognitive symptoms. However, they do not reveal how advanced the symptoms are or the extent of cognitive decline caused by Alzheimer’s dementia. This distinction is important because current treatments for Alzheimer’s are most effective in the early stages. A reliable, accessible method to assess disease progression could help doctors identify which patients are most likely to benefit from treatment and how aggressively they should be treated.
The new test also offers valuable insight into whether a person’s symptoms are due to Alzheimer’s or another underlying condition.
The study was recently published in the journal Nature Medicine.
In the study, the researchers found that levels of a protein called MTBR-tau243 in the blood accurately reflect the amount of toxic accumulation of tau aggregates in the brain and correlate with the severity of Alzheimer’s disease. Analyzing blood levels of MTBR-tau243 from a group of people with cognitive decline, the researchers were able to distinguish between people with early- or later-stage Alzheimer’s disease and separate both groups of Alzheimer’s patients from people whose symptoms were caused by something other than Alzheimer’s disease.
“This blood test clearly identifies Alzheimer’s tau tangles, which is our best biomarker measure of Alzheimer’s symptoms and dementia,” said co-senior author Randall J. Bateman, MD, the Charles F. and Joanne Knight Distinguished Professor of Neurology at WashU Medicine. “In clinical practice right now, we don’t have easy or accessible measures of Alzheimer’s tangles and dementia, and so a tangle blood test like this can provide a much better indication if the symptoms are due to Alzheimer’s and may also help doctors decide which treatments are best for their patients.”
Tracking Alzheimer’s disease progression from blood
Alzheimer’s disease involves a build-up of a protein, called amyloid, into plaques in the brain, followed by the development of tangles of tau protein years later. Cognitive symptoms emerge around the time tau tangles become detectable, and symptoms worsen as the tangles spread. The gold standard for staging Alzheimer’s disease is positron emission tomography (PET) brain scans for amyloid plaques and tau tangles. Amyloid scans yield information about the presymptomatic and early symptomatic stages, while tau scans are useful for tracking later stages of the disease. PET brain scans are highly accurate but expensive, time-consuming, and frequently unavailable outside of major research centers, so they are not widely used.
Bateman leads a team that is developing blood tests for Alzheimer’s disease as a more accessible alternative to brain scans. They have developed two blood tests that correlate closely with the amount of amyloid plaques in the brain. Both are now used by doctors to aid diagnosis. But until now, there has been no blood test that reports on tau levels in the brain.
In a previous study, Bateman and colleagues — including co-first authors Kanta Horie, PhD, a research associate professor of neurology at WashU Medicine, and Gemma Salvadó, PhD, then a postdoctoral researcher at Lund University, and co-senior author Oskar Hansson, MD, PhD, a professor of neurology at Lund University — showed that cerebrospinal fluid levels of MTBR-tau243 correlate closely with tau tangles in the brain. In the current study, the team extended the analysis to blood. A blood sample is easier to collect than cerebrospinal fluid, which is obtained via spinal tap.

The researchers developed a technique to measure MTBR-tau243 levels in people’s blood and compared it to the amount of tau tangles in their brains as measured by brain scans. They piloted the approach on data from two cohorts: volunteers at WashU Medicine’s Charles F. and Joanne Knight Alzheimer Disease Research Center, which included 108 people, and a subset of 55 people from the Swedish BioFINDER-2 cohort. To assess whether the approach was generalizable, they validated it in an independent dataset consisting of the remaining 739 people in the BioFINDER-2 cohort.
The people in the two cohorts represented all but the most severe end of the spectrum of Alzheimer’s disease, from the presymptomatic stage when brain amyloid levels are elevated but people remain cognitively healthy, through early-stage disease with mild cognitive impairments, to late symptomatic disease when patients exhibit full-blown dementia. For comparison, cognitively healthy people with normal amyloid levels, and people with cognitive symptoms due to conditions other than Alzheimer’s disease, were included.
The researchers’ analysis showed that blood MTBR-tau243 levels reflected the amount of tau tangles in the brain with 92% accuracy. MTBR-tau243 levels in the blood were normal in asymptomatic people regardless of amyloid status, meaning that blood MTBR-tau243 levels do not change between healthy people and people in the presymptomatic stage of Alzheimer’s disease with amyloid plaques.
Among people with cognitive symptoms due to Alzheimer’s disease, MTBR-tau243 levels were significantly elevated for people in the mild cognitive impairment phase of Alzheimer’s disease and much higher — up to 200 times — for those in the dementia phase. Those differences translated into clear separation of people in early- and late-stage Alzheimer’s disease. At the same time, MTBR-tau243 levels were normal in people with cognitive symptoms due to diseases other than Alzheimer’s, meaning that the test effectively distinguished Alzheimer’s dementia from other kinds of dementia.
The technology underlying the blood test for tau aggregates has been licensed by WashU to C2N Diagnostics, a WashU startup that developed the blood tests for amyloid. These amyloid tests incorporate measures of another form of tau called p-tau217.
“I believe we will use blood-based p-tau217 to determine whether an individual has Alzheimer’s disease, but MTBR-tau243 will be a highly valuable complement in both clinical settings and research trials,” said Hansson. “When both of these biomarkers are positive, the likelihood that Alzheimer’s is the underlying cause of a person’s cognitive symptoms increases significantly, compared to when only p-tau217 is abnormal. This distinction is crucial for selecting the most appropriate treatment for each patient.”
Blood tests could inform personalized Alzheimer’s treatment
Two Alzheimer’s therapies have been approved by the Food and Drug Administration (FDA) to slow progression of the disease, and both work by lowering amyloid levels in the brain. Horie said the number and variety of available Alzheimer’s medications may soon be expanding, as several experimental drugs that target tau or other aspects of Alzheimer’s disease are in the pipeline. With blood tests to diagnose and stage the disease, doctors would be able to tailor treatments to the patient’s particular disease state.
“We’re about to enter the era of personalized medicine for Alzheimer’s disease,” Horie said. “For early stages with low tau tangles, anti-amyloid therapies could be more efficacious than in late stages. But after the onset of dementia with high tau tangles, anti-tau therapy or one of the many other experimental approaches may be more effective. Once we have a clinically available blood test for staging, plus treatments that work at different stages of the disease, doctors will be able to optimize their treatment plans for the specific needs of each patient.”
Reference: “Plasma MTBR-tau243 biomarker identifies tau tangle pathology in Alzheimer’s disease” by Kanta Horie, Gemma Salvadó, Rama K. Koppisetti, Shorena Janelidze, Nicolas R. Barthélemy, Yingxin He, Chihiro Sato, Brian A. Gordon, Hong Jiang, Tammie L. S. Benzinger, Erik Stomrud, David M. Holtzman, Niklas Mattsson-Carlgren, John C. Morris, Sebastian Palmqvist, Rik Ossenkoppele, Suzanne E. Schindler, Oskar Hansson and Randall J. Bateman, 31 March 2025, Nature Medicine.
DOI: 10.1038/s41591-025-03617-7
This work was supported by the Charles F. and Joanne Knight Alzheimer Disease Research Center; the Tracy Family SILQ Center; the National Institutes of Health (NIH), grant number R01AG070941; the Alzheimer’s Association’s Zenith Award; the Hope Center for Neurological Disorders; and the Department of Neurology at WashU Medicine. The Swedish BioFINDER-2 study was supported by the U.S. National Institute on Aging, grant number R01AG083740, the European Research Council, grant number ADG-101096455; the Alzheimer’s Association, grant numbers ZEN24-1069572 and SG-23-1061717; the GHR Foundation; the Swedish Research Council, grant numbers 2022-00775, 2021-02219, and 2018-02052; ERA PerMed, grant number ERAPERMED2021-184; the Knut and Alice Wallenberg foundation, grant number 2022-0231; the Strategic Research Area MultiPark (Multidisciplinary Research in Parkinson’s disease) at Lund University; the Swedish Alzheimer Foundation, grant numbers AF-980907, AF-994229, and AF-994075; the Swedish Brain Foundation, grant numbers FO2021-0293, FO2023-0163 and FO2022-0204; the Wallenberg AI, Autonomous Systems and Software Program (WASP) and the SciLifeLab and Wallenberg National Program for Data-Driven Life Science (DDLS) joint call for research projects, grant number WASP/DDLS22-066; the Parkinson foundation of Sweden, grant number 1412/22; the Cure Alzheimer’s fund; the Rönström Family Foundation; the Konung Gustaf V:s och Drottning Victorias Frimurarestiftelse; the Skåne University Hospital Foundation, grant number 2020-O000028; the Regionalt Forskningsstöd, grant number 2022-1259; and the Swedish federal government under the ALF agreement, grant numbers 2022-Projekt0080 and 2022-Projekt0107. Gemma Salvadó received funding from the European Union’s Horizon 2020 Research and Innovation Program under Marie Sklodowska-Curie action grant agreement number 101061836; the Alzheimer’s Association, fellowship number AARF-22-972612; the Alzheimerfonden, grant number AF-980942; BrightFocus Foundation, fellowship number A2024007F; Greta och Johan Kocks; and the Strategic Research Area MultiPark (Multidisciplinary Research in Parkinson’s Disease) at Lund University.

News
Study Shows Brain Signals Only Matter if They Arrive on Time
Signals are processed only if they reach the brain during brief receptive cycles. This timing mechanism explains how attention filters information and may inform therapies and brain-inspired technologies. It has long been recognized that [...]
Does Space-Time Really Exist?
Is time something that flows — or just an illusion? Exploring space-time as either a fixed “block universe” or a dynamic fabric reveals deeper mysteries about existence, change, and the very nature of reality. [...]
Unlocking hidden soil microbes for new antibiotics
Most bacteria cannot be cultured in the lab-and that's been bad news for medicine. Many of our frontline antibiotics originated from microbes, yet as antibiotic resistance spreads and drug pipelines run dry, the soil [...]
By working together, cells can extend their senses beyond their direct environment
The story of the princess and the pea evokes an image of a highly sensitive young royal woman so refined, she can sense a pea under a stack of mattresses. When it comes to [...]
Overworked Brain Cells May Hold the Key to Parkinson’s
Scientists at Gladstone Institutes uncovered a surprising reason why dopamine-producing neurons, crucial for smooth body movements, die in Parkinson’s disease. In mice, when these neurons were kept overactive for weeks, they began to falter, [...]
Old tires find new life: Rubber particles strengthen superhydrophobic coatings against corrosion
Development of highly robust superhydrophobic anti-corrosion coating using recycled tire rubber particles. Superhydrophobic materials offer a strategy for developing marine anti-corrosion materials due to their low solid-liquid contact area and low surface energy. However, [...]
This implant could soon allow you to read minds
Mind reading: Long a science fiction fantasy, today an increasingly concrete scientific goal. Researchers at Stanford University have succeeded in decoding internal language in real time thanks to a brain implant and artificial intelligence. [...]
A New Weapon Against Cancer: Cold Plasma Destroys Hidden Tumor Cells
Cold plasma penetrates deep into tumors and attacks cancer cells. Short-lived molecules were identified as key drivers. Scientists at the Leibniz Institute for Plasma Science and Technology (INP), working with colleagues from Greifswald University Hospital and [...]
This Common Sleep Aid May Also Protect Your Brain From Alzheimer’s
Lemborexant and similar sleep medications show potential for treating tau-related disorders, including Alzheimer’s disease. New research from Washington University School of Medicine in St. Louis shows that a commonly used sleep medication can restore normal sleep patterns and [...]
Sugar-Coated Nanoparticles Boost Cancer Drug Efficacy
A team of researchers at the University of Mississippi has discovered that coating cancer treatment carrying nanoparticles in a sugar-like material increases their treatment efficacy. They reported their findings in Advanced Healthcare Materials. Over a tenth of breast [...]
Nanoparticle-Based Vaccine Shows Promise in Fighting Cancer
In a study published in OncoImmunology, researchers from the German Cancer Research Center and Heidelberg University have created a therapeutic vaccine that mobilizes the immune system to target cancer cells. The researchers demonstrated that virus peptides combined [...]
Quantitative imaging method reveals how cells rapidly sort and transport lipids
Lipids are difficult to detect with light microscopy. Using a new chemical labeling strategy, a Dresden-based team led by André Nadler at the Max Planck Institute of Molecular Cell Biology and Genetics (MPI-CBG) and [...]
Ancient DNA reveals cause of world’s first recorded pandemic
Scientists have confirmed that the Justinian Plague, the world’s first recorded pandemic, was caused by Yersinia pestis, the same bacterium behind the Black Death. Dating back some 1,500 years and long described in historical texts but [...]
“AI Is Not Intelligent at All” – Expert Warns of Worldwide Threat to Human Dignity
Opaque AI systems risk undermining human rights and dignity. Global cooperation is needed to ensure protection. The rise of artificial intelligence (AI) has changed how people interact, but it also poses a global risk to human [...]
Nanomotors: Where Are They Now?
First introduced in 2004, nanomotors have steadily advanced from a scientific curiosity to a practical technology with wide-ranging applications. This article explores the key developments, recent innovations, and major uses of nanomotors today. A [...]
Study Finds 95% of Tested Beers Contain Toxic “Forever Chemicals”
Researchers found PFAS in 95% of tested beers, with the highest levels linked to contaminated local water sources. Per- and polyfluoroalkyl substances (PFAS), better known as forever chemicals, are gaining notoriety for their ability [...]