Most cancers become deadly by maintaining a low profile, only showing symptoms when they're too advanced to treat. Ovarian and gastroesophageal cancers are among the most notorious for this sly disease progression, often leading to late-stage diagnoses.
Now an international team of researchers, including from The Rockefeller University's Laboratory of Cellular and Structural Biology, have developed a highly sensitive blood test capable of detecting a key protein produced by cancer cells that shows promise for early detection. The findings were recently published in the journal Cancer Discovery.
Unlike many cancer tests that are limited in scope, expensive, or rely on invasive tissue sampling, this new method is a low-cost, multi-cancer detector that can pick up the presence of the telltale protein, known as LINE-1-ORF1p, in a tiny amount of blood in less than two hours.
Genetic copy and paste
Cancer biomarker detection is a young and growing field. There are a number of such biomarkers, but they can come with drawbacks. Some require surgical biopsies. Others are employed only after the emergence of symptoms, which can be too late for an effective intervention. Most are normal human proteins that have variability from person to person, making a single value hard to interpret. And many are targeted to a specific cancer, narrowing their range.
But recently, an important new biomarker for earlier detection may have emerged. That protein, known as LINE-1 ORF1p, came onto researchers' radar about a decade ago. LINE-1 is a retrotransposon, a virus-like element present in every human cell that replicates through a copy-and-paste mechanism, resulting in a new copy in a new position in the genome. ORF1p is a protein it produces at high levels in cancer.
"Transposons are normally expressed in sperm and egg and during embryogenesis, so there are some circumstances where you have nonpathobiological expression of transposons," says Rockefeller research associate professor John LaCava, a co-author on the paper, who specializes in LINE-1 research. "But otherwise, these 'jumping genes' are silenced within the genome, because their activity creates stress and insults in the cell."
Most of the time, the body keeps LINE-1 in check. "There are layers of mechanisms that prevent LINE–1 from being expressed and producing ORF1p, so we can use the presence of the protein as a proxy for an unhealthy cell that no longer has control over its transcriptome," LaCava notes. "You shouldn't find ORF1p in the bloodstream of a healthy person."
Over the past five years, he adds, "it's become abundantly clear that these proteins become highly elevated in most cancers," including many of the most common and lethal cancers of the esophagus, colon, lung, breast, prostate, ovaries, uterus, pancreas, and head and neck.
Because carcinoma cells make ORF1p from the onset of disease, researchers have long sought a sensitive, accurate test to detect ORF1p as early as possible. The ability to spot it in patients before a cancer has a chance to spread could potentially save lives.
Ultrasensitive assay
Rockefeller researchers teamed up with lead investigators from Mass General Brigham, the Wyss Institute for Biologically Inspired Engineering at Harvard University, and Dana-Farber Cancer Institute, along with other partnering institutions, to engineer a fast, low-cost assay able to detect ORF1p in plasma, which accounts for more than half of the content of human blood.
The new study uses a single-molecule-based detection technology known as Simoa that was developed by co-author David Walt, of Harvard. The Rockefeller team contributed custom nanobodies derived and engineered from llamas to act as capture reagents that ensnare the ORF1p protein and as sensitive probes to detect it.
"We developed these reagents as part of our mission to capture and describe the molecular associations of ORF1p with other proteins in colorectal cancers," says LaCava. "We knew that most colorectal cancers have an abundance of LINE-1 proteins, so we reasoned that the interactions they form could be dysregulating normal cell functions in ways that benefit cancer. Isolating LINE-1 particles allowed us to have a closer look at these interactions. Later, it was clear that our collaborators at Harvard could make use of the same reagents for their developing biomarker assay, so we shared them."
The researchers found that the assay was highly accurate at detecting ORF1p in the blood samples of patients with a variety of cancers, including ovarian, gastroesophageal, and colorectal cancers. It costs less than $3 to produce and returns fast results.
"We were shocked by how well this test worked across cancer types," says lead author Martin Taylor, of the Department of Pathology at Massachusetts General Hospital.
The researchers also analyzed the plasma of 400 healthy people aged 20–90 who'd donated blood to the Mass General Brigham Biobank; ORF1p was undetectable in 97–99% of them. Of the five people who did have detectable ORF1p, the person with the highest level was found six months later to have advanced prostate cancer.
Be wary of spikes
Another potential use of the assay is monitoring how a patient is responding to cancer therapy. If a treatment is effective, the ORF1p level in the patient's blood should drop, LaCava says. In one part of the study, the researchers studied 19 patients being treated for gastroesophageal cancer; in the 13 people who responded to the treatment, levels of ORF1p fell below the detection limit of the assay.
Tracking the protein could potentially be incorporated into routine healthcare, says LaCava. "During a healthy time in your life, you could have your ORF1p levels measured to establish a baseline. Then your doctor would just keep an eye out for any spikes in ORF1p levels, which could be indicative of a change in your state of health. While there might be some minor ORF1p fluctuations here and there, a spike would be a cause for a deeper investigation."
From llamas to doctors
The study results also illustrate the immense potential of nanobody reagents generated through the study of interactomics, says Rout. Interactomics seeks to understand the dynamic interactions of the millions of individual components in a cell, particularly its proteins and nucleic acids. These interactions form macromolecular complexes that transmit information and control cellular behaviors. Pathogenic changes in these interactions underlie all diseases.
"There's an essential need for much better tools to reveal and dissect interactomes that's only beginning to be met," Rout says. "To that end, we often collaborate with other institutions on the development of reagents such as our llama-derived nanobodies. The resulting products are not mere research tools—they have enormous potential in the hands of doctors."
News
Nanoparticle blueprints reveal path to smarter medicines
Lipid nanoparticles (LNPs) are the delivery vehicles of modern medicine, carrying cancer drugs, gene therapies and vaccines into cells. Until recently, many scientists assumed that all LNPs followed more or less the same blueprint, [...]
How nanomedicine and AI are teaming up to tackle neurodegenerative diseases
When I first realized the scale of the challenge posed by neurodegenerative diseases, such as Alzheimer's, Parkinson's disease and amyotrophic lateral sclerosis (ALS), I felt simultaneously humbled and motivated. These disorders are not caused [...]
Self-Organizing Light Could Transform Computing and Communications
USC engineers have demonstrated a new kind of optical device that lets light organize its own route using the principles of thermodynamics. Instead of relying on switches or digital control, the light finds its own [...]
Groundbreaking New Way of Measuring Blood Pressure Could Save Thousands of Lives
A new method that improves the accuracy of interpreting blood pressure measurements taken at the ankle could be vital for individuals who are unable to have their blood pressure measured on the arm. A newly developed [...]
Scientist tackles key roadblock for AI in drug discovery
The drug development pipeline is a costly and lengthy process. Identifying high-quality "hit" compounds—those with high potency, selectivity, and favorable metabolic properties—at the earliest stages is important for reducing cost and accelerating the path [...]
Nanoplastics with environmental coatings can sneak past the skin’s defenses
Plastic is ubiquitous in the modern world, and it's notorious for taking a long time to completely break down in the environment - if it ever does. But even without breaking down completely, plastic [...]
Chernobyl scientists discover black fungus feeding on deadly radiation
It looks pretty sinister, but it might actually be incredibly helpful When reactor number four in Chernobyl exploded, it triggered the worst nuclear disaster in history, one which the surrounding area still has not [...]
Long COVID Is Taking A Silent Toll On Mental Health, Here’s What Experts Say
Months after recovering from COVID-19, many people continue to feel unwell. They speak of exhaustion that doesn’t fade, difficulty breathing, or an unsettling mental haze. What’s becoming increasingly clear is that recovery from the [...]
Study Delivers Cancer Drugs Directly to the Tumor Nucleus
A new peptide-based nanotube treatment sneaks chemo into drug-resistant cancer cells, providing a unique workaround to one of oncology’s toughest hurdles. CiQUS researchers have developed a novel molecular strategy that allows a chemotherapy drug to [...]
Scientists Begin $14.2 Million Project To Decode the Body’s “Hidden Sixth Sense”
An NIH-supported initiative seeks to unravel how the nervous system tracks and regulates the body’s internal organs. How does your brain recognize when it’s time to take a breath, when your blood pressure has [...]
Scientists Discover a New Form of Ice That Shouldn’t Exist
Researchers at the European XFEL and DESY are investigating unusual forms of ice that can exist at room temperature when subjected to extreme pressure. Ice comes in many forms, even when made of nothing but water [...]
Nobel-winning, tiny ‘sponge crystals’ with an astonishing amount of inner space
The 2025 Nobel Prize in chemistry was awarded to Richard Robson, Susumu Kitagawa and Omar Yaghi on Oct. 8, 2025, for the development of metal-organic frameworks, or MOFs, which are tunable crystal structures with extremely [...]
Harnessing Green-Synthesized Nanoparticles for Water Purification
A new review reveals how plant- and microbe-derived nanoparticles can power next-gen water disinfection, delivering cleaner, safer water without the environmental cost of traditional treatments. A recent review published in Nanomaterials highlights the potential of green-synthesized nanomaterials (GSNMs) in [...]
Brainstem damage found to be behind long-lasting effects of severe Covid-19
Damage to the brainstem - the brain's 'control center' - is behind long-lasting physical and psychiatric effects of severe Covid-19 infection, a study suggests. Using ultra-high-resolution scanners that can see the living brain in [...]
CT scan changes over one year predict outcomes in fibrotic lung disease
Researchers at National Jewish Health have shown that subtle increases in lung scarring, detected by an artificial intelligence-based tool on CT scans taken one year apart, are associated with disease progression and survival in [...]
AI Spots Hidden Signs of Disease Before Symptoms Appear
Researchers suggest that examining the inner workings of cells more closely could help physicians detect diseases earlier and more accurately match patients with effective therapies. Researchers at McGill University have created an artificial intelligence tool capable of uncovering [...]














