Researchers determine the lifetimes of commercial drinking straws in the coastal ocean and develop a prototype bioplastic straw that degrades even faster than paper.
A WHOI study has shown that some biodegradable straws degrade up to 50% within 16 weeks in marine environments, presenting a sustainable alternative to traditional plastics and contributing to reduced ocean pollution.
Straws rank among the most prevalent plastic waste items littering coastlines. With the production, consumption, and disposal of plastic products on the rise, scientists and manufacturers are developing alternative materials that perform just as effectively without adding to ongoing environmental plastic pollution.
But not all plastics are created the same—different manufacturers have different formulations of base polymers—such as polylactic acid (PLA) and polypropylene (PP)—and chemical additives. That means different plastic formulations behave differently in the environment and break down in the ocean at different rates. There are new materials out in the market that move away from petroleum-derived products—like cellulose diacetate (CDA), a polymer derived from wood pulp that is widely used in consumer goods—and Woods Hole Oceanographic Institution (WHOI) scientists have been working to quantify the environmental lifetimes of a wide range of plastic goods to answer the unresolved question, how long do straws last in the ocean?
Straws are one of the most commonly found sources of marine litter. Researchers say we lack a firm understanding of how long plastics last in the ocean, but that science supports moving away from using the material. Credit: Bryan James/©Woods Hole Oceanographic Institution
Testing and Results on Straw Degradation
In a new paper published in ACS Sustainable Chemistry & Engineering, WHOI scientists Collin Ward, Bryan James, Chris Reddy, and Yanchen Sun put different types of plastics and paper drinking straws head-to-head to see which degrade the fastest in the coastal ocean. They partnered with scientists from bioplastic manufacturing company Eastman, who provided funding, contributed as coauthors, and supplied materials for the study.
"We lack a firm understanding of how long plastics last in the ocean, so we've been designing methods to measure how fast these materials degrade," Ward said. "It turns out, in this case, there are some bioplastic straws that actually degrade fairly quickly, which is good news."
Degradation of straws made from different types of materials were observed for 16 weeks at WHOI's Environmental Systems Lab. The tanks the straws were kept in had a continuous flow of ocean water from Martha's Vineyard Sound. Credit: Rachel Mann/©Woods Hole Oceanographic Institution
Promising Developments in Biodegradable Straws
Their approach involved suspending eight different types of straws in a tank of continuously flowing seawater from Martha's Vineyard Sound, Massachusetts. This method also controlled the temperature, light exposure, and other environmental variables to mimic the natural marine environment. All straws were monitored for signs of degradation over 16 weeks, and the microbial communities growing on the straws were characterized.
"My interest has been to understand the fate, persistence, and toxicity of plastic and how we can use that information to design next-generation materials that are better for people and the planet," James said. "We have the unique capability where we can bring the environment of the ocean on land in our tanks at the environmental systems laboratory. It gives us a very controlled environment with natural seawater."
They tested straws made of CDA, polyhydroxyalkanoates (PHA), paper, PLA, and PP. In the weeks the straws were submerged in the tanks, the CDA, PHA, and paper straws degraded by up to 50%, projecting environmental lifetimes of 10-20 months in the coastal ocean. The PLA and PP straws showed no measurable signs of degradation.
Environmental Impact of Straw Materials
The scientists then compared two straws made from CDA—one a solid and the other a foam, both provided by Eastman. The straw made from foamed CDA was a prototype to see if increasing the surface area would accelerate break down. They found that the degradation rate of the foam straw was 184% faster than its solid counterpart, resulting in a shorter projected environmental lifetime than the paper straws.
"The unique aspects of this foam straw are that it's able to have a shorter expected lifetime than the paper straws but retain the properties that you enjoy of a plastic or a bioplastic straw," James said, making it a promising alternative to conventional plastic straws compared to paper straws, which degrade quickly in the ocean but sour user experience by getting soggy, according to the authors.
Industry and Environmental Perspectives
"This study can be immensely valuable for straw manufacturers by providing informed and transparent data when selecting a material for straws. Even more, it provides reassurance that CDA-based straws won't add to the persistent plastic pollution, while also demonstrating straw manufacturers' commitment to offering a sustainable product that reduces risk to marine life," said Jeff Carbeck, Eastman's Vice President of Corporate Innovation.
The Persistent Challenge of Plastics
Science supports a push away from conventional plastic material. Plastic pollution causes harm to humans and ecosystems and the plastic industry is a large-scale contributor to climate change, accounting for roughly 4 to 5% of all greenhouse gas emissions across their lifecycle. With plastic waste becoming ubiquitous in the global ocean and marine food chain over the past 50 years, it's important to identify new materials that are sustainably sourced, contribute to the shift from a linear to a circular economy, and break down if they incidentally leak into the environment.
"While some push to shift away from plastics, the reality is that plastics are here to stay. We're trying to accept the fact that these materials are going to be used by consumers, and then we can work with companies to minimize the impacts of them should they leak into the environment," Ward said.
Collaboration for Sustainable Solutions
"We recognize the importance of testing, validating, and understanding the marine degradation of our CDA based products, but lacked the necessary resources," Carbeck said. "Knowing that WHOI possessed the expertise and facilities, we engaged in a collaborative effort to address this challenge. This partnership showcases the power of industry-academia collaboration in advancing shared goals and making a positive impact."
The research team also found that the microbial communities of the straws that degraded were unique to each straw material. However, the microbial communities on both non-degrading straws were the same despite having vastly different chemical structures. This provided further evidence that the native microbes were degrading the biodegradable straws, whereas the non-biodegradable straws likely persist in the ocean.
"Our understanding of the impacts of plastic pollution on ocean health is really uncertain, and a lot of this boils down to not knowing the long-term fates of these materials," Ward said. He and the rest of the research team plan to continue measuring the degradability of plastic materials, with the hope of guiding where the industry goes next.
"There are a lot of advantages of partnering with material manufacturers, including access to analytical facilities, and knowledge about and access to their materials that you don't get if you work in your own silo," Ward said. "We're trying to optimize their products for degradation in the environment and ultimately the good of the planet."
Key Takeaways
- Not all plastics are created the same, and some last longer in the ocean than others. WHOI scientists have been working for years to quantify the environmental lifetimes of a wide range of plastic goods to see which have the shortest and longest lifespans in the ocean. To determine what plastics persist in the ocean, the team tests different products in large tanks that recreate the natural ocean environment. They focused on drinking straws first, as they are one of the most prevalent forms of plastic waste found in beach cleanups.
- The authors found that straws made from cellulose diacetate (CDA), polyhydroxyalkanoates (PHA), and paper degraded by up to 50% in 16 weeks. They all had unique microbial communities that helped break down the material.
- A prototype straw from Eastman, made of foamed CDA, degraded more quickly than the solid, meaning that altering the surface area of the straw can speed up the degradation process.
- Science supports a shift away from persistent plastics—making it even more important to ensure new materials break down if they leak into the environment and don't further pollute the ocean.
Reference: "Strategies to Reduce the Environmental Lifetimes of Drinking Straws in the Coastal Ocean" by Bryan D. James, Yanchen Sun, Mounir Izallalen, Sharmistha Mazumder, Steven T. Perri, Brian Edwards, Jos de Wit, Christopher M. Reddy and Collin P. Ward, 30 January 2024, ACS Sustainable Chemistry & Engineering.
DOI: 10.1021/acssuschemeng.3c07391
News
A Simple Brain Scan May Help Restore Movement After Paralysis
A brain cap and smart algorithms may one day help paralyzed patients turn thought into movement—no surgery required. People with spinal cord injuries often experience partial or complete loss of movement in their arms [...]
Plant Discovery Could Transform How Medicines Are Made
Scientists have uncovered an unexpected way plants make powerful chemicals, revealing hidden biological connections that could transform how medicines are discovered and produced. Plants produce protective chemicals called alkaloids as part of their natural [...]
Scientists Develop IV Therapy That Repairs the Brain After Stroke
New nanomaterial passes the blood-brain barrier to reduce damaging inflammation after the most common form of stroke. When someone experiences a stroke, doctors must quickly restore blood flow to the brain to prevent death. [...]
Analyzing Darwin’s specimens without opening 200-year-old jars
Scientists have successfully analyzed Charles Darwin's original specimens from his HMS Beagle voyage (1831 to 1836) to the Galapagos Islands. Remarkably, the specimens have been analyzed without opening their 200-year-old preservation jars. Examining 46 [...]
Scientists discover natural ‘brake’ that could stop harmful inflammation
Researchers at University College London (UCL) have uncovered a key mechanism that helps the body switch off inflammation—a breakthrough that could lead to new treatments for chronic diseases affecting millions worldwide. Inflammation is the [...]
A Forgotten Molecule Could Revive Failing Antifungal Drugs and Save Millions of Lives
Scientists have uncovered a way to make existing antifungal drugs work again against deadly, drug-resistant fungi. Fungal infections claim millions of lives worldwide each year, and current medical treatments are failing to keep pace. [...]
Scientists Trap Thyme’s Healing Power in Tiny Capsules
A new micro-encapsulation breakthrough could turn thyme’s powerful health benefits into safer, smarter nanodoses. Thyme extract is often praised for its wide range of health benefits, giving it a reputation as a natural medicinal [...]
Scientists Develop Spray-On Powder That Instantly Seals Life-Threatening Wounds
KAIST scientists have created a fast-acting, stable powder hemostat that stops bleeding in one second and could significantly improve survival in combat and emergency medicine. Severe blood loss remains the primary cause of death from [...]
Oceans Are Struggling To Absorb Carbon As Microplastics Flood Their Waters
New research points to an unexpected way plastic pollution may be influencing Earth’s climate system. A recent study suggests that microscopic plastic pollution is reducing the ocean’s capacity to take in carbon dioxide, a [...]
Molecular Manufacturing: The Future of Nanomedicine – New book from Frank Boehm
This book explores the revolutionary potential of atomically precise manufacturing technologies to transform global healthcare, as well as practically every other sector across society. This forward-thinking volume examines how envisaged Factory@Home systems might enable the cost-effective [...]
New Book! NanoMedical Brain/Cloud Interface – Explorations and Implications
New book from Frank Boehm, NanoappsMedical Inc Founder: This book explores the future hypothetical possibility that the cerebral cortex of the human brain might be seamlessly, safely, and securely connected with the Cloud via [...]
Global Health Care Equivalency in the Age of Nanotechnology, Nanomedicine and Artificial Intelligence
A new book by Frank Boehm, NanoappsMedical Inc. Founder. This groundbreaking volume explores the vision of a Global Health Care Equivalency (GHCE) system powered by artificial intelligence and quantum computing technologies, operating on secure [...]
Miller School Researchers Pioneer Nanovanilloid-Based Brain Cooling for Traumatic Injury
A multidisciplinary team at the University of Miami Miller School of Medicine has developed a breakthrough nanodrug platform that may prove beneficial for rapid, targeted therapeutic hypothermia after traumatic brain injury (TBI). Their work, published in ACS [...]
COVID-19 still claims more than 100,000 US lives each year
Centers for Disease Control and Prevention researchers report national estimates of 43.6 million COVID-19-associated illnesses and 101,300 deaths in the US during October 2022 to September 2023, plus 33.0 million illnesses and 100,800 deaths [...]
Nanomedicine in 2026: Experts Predict the Year Ahead
Progress in nanomedicine is almost as fast as the science is small. Over the last year, we've seen an abundance of headlines covering medical R&D at the nanoscale: polymer-coated nanoparticles targeting ovarian cancer, Albumin recruiting nanoparticles for [...]
Lipid nanoparticles could unlock access for millions of autoimmune patients
Capstan Therapeutics scientists demonstrate that lipid nanoparticles can engineer CAR T cells within the body without laboratory cell manufacturing and ex vivo expansion. The method using targeted lipid nanoparticles (tLNPs) is designed to deliver [...]

















