Scientists at Scripps Research have reported success in initial tests of a new, nanotech-based strategy against autoimmune diseases.
The scientists, who reported their results in ACS Nano, engineered cell-like “nanoparticles” that target only the immune cells driving an autoimmune reaction, leaving the rest of the immune system intact and healthy. The nanoparticles greatly delayed, and in some animals even prevented, severe disease in a mouse model of arthritis.
“The potential advantage of this approach is that it would enable safe, long-term treatment for autoimmune diseases where the immune system attacks its own tissues or organs—using a method that won’t cause broad immune suppression, as current treatments do,” says study senior author James Paulson, Ph.D., Cecil H. and Ida M. Green Chair of Chemistry in the Department of Molecular Medicine at Scripps Research.
Autoimmune diseases such as rheumatoid arthritis are caused when the immune system mistakenly attacks a person’s own tissues or organs. These illnesses affect an estimated 10 million people in the U.S. alone. Treatments are available and can be effective for many patients, but they tend to suppress the immune system indiscriminately, creating an enhanced susceptibility to infections and cancers—among other side effects.
Paulson and his team have taken an approach that targets the immune system more narrowly. Many autoimmune diseases are triggered or driven by immune attacks on just one protein in the patient’s body, known as a “self-antigen.”
The idea underlying the nanoparticle strategy is to eliminate or deactivate only the immune cells that attack that self-antigen—an approach that could be at least as effective as broad immune suppression, without the side effects. Autoimmune diseases that are dominated by immune responses to a single self-antigen include some forms of arthritis, the skin blister disease known as pemphigus and the thyroid ailment Graves’ disease.
The researchers, including first author Katarzyna Brzezicka, Ph.D., a postdoctoral research associate in the Paulson lab, research assistant Britni Arlian, and other lab members, designed nanoparticles that could deactivate two types of immune cells: B cells and T cells.
On its surface, each nanoparticle bore copies of a target self-antigen, plus a sugar-related molecule that can bind to a special “off switch” receptor on B cells called CD22. B cells, which make antibodies and are specific to different antigens, will effectively shut themselves off if they encounter both the particular antigen they target and the binding partner of CD22 at the same time.
Each nanoparticle also was laced with a powerful compound called rapamycin to stimulate the production of immune cells called regulatory T cells. Treg cells, as they’re also known, are responsible for suppressing other T cells needed to generate an autoimmune attack. The overall aim of the study was to effectively knock out only the B and T cells that recognize the self-antigen, leaving the rest of the B- and T-cell populations intact.
The researchers first demonstrated that their nanoparticle-based strategy could tolerize the mouse immune system to a chicken protein, ovalbumin, that would otherwise trigger a strong response. Next, they tested the strategy in a widely used mouse model of arthritis, in which the mouse immune system is genetically predisposed to attack a self-antigen called GPI.
The scientists showed that treatment of the mice with GPI-tolerizing nanoparticles at the age of three weeks greatly delayed the development of arthritis signs that would normally appear a week or two later. In fact, about a third of the mice remained arthritis-free for the maximum follow-up period of 300 days. Tests confirmed that the treatment dramatically reduced the mice’s production of anti-GPI antibodies, and at the same time boosted their Treg populations.
Paulson says his team plans to follow up these highly promising results with further optimization of the nanoparticle strategy.
“We were able to ‘cure’ a third of these animals in this early demonstration, and I think there’s the potential to combine our nanoparticles with other immune modulator treatments to make it even more effective,” Paulson says. “So that will our next step—as well as demonstrating our technology against other autoimmune diseases caused by unwanted immune responses to a self-antigen.”
News
Scientists Discover a New “Cleanup Hub” Inside the Human Brain
A newly identified lymphatic drainage pathway along the middle meningeal artery reveals how the human brain clears waste. How does the brain clear away waste? This task is handled by the brain’s lymphatic drainage [...]
New Drug Slashes Dangerous Blood Fats by Nearly 40% in First Human Trial
Scientists have found a way to fine-tune a central fat-control pathway in the liver, reducing harmful blood triglycerides while preserving beneficial cholesterol functions. When we eat, the body turns surplus calories into molecules called [...]
A Simple Brain Scan May Help Restore Movement After Paralysis
A brain cap and smart algorithms may one day help paralyzed patients turn thought into movement—no surgery required. People with spinal cord injuries often experience partial or complete loss of movement in their arms [...]
Plant Discovery Could Transform How Medicines Are Made
Scientists have uncovered an unexpected way plants make powerful chemicals, revealing hidden biological connections that could transform how medicines are discovered and produced. Plants produce protective chemicals called alkaloids as part of their natural [...]
Scientists Develop IV Therapy That Repairs the Brain After Stroke
New nanomaterial passes the blood-brain barrier to reduce damaging inflammation after the most common form of stroke. When someone experiences a stroke, doctors must quickly restore blood flow to the brain to prevent death. [...]
Analyzing Darwin’s specimens without opening 200-year-old jars
Scientists have successfully analyzed Charles Darwin's original specimens from his HMS Beagle voyage (1831 to 1836) to the Galapagos Islands. Remarkably, the specimens have been analyzed without opening their 200-year-old preservation jars. Examining 46 [...]
Scientists discover natural ‘brake’ that could stop harmful inflammation
Researchers at University College London (UCL) have uncovered a key mechanism that helps the body switch off inflammation—a breakthrough that could lead to new treatments for chronic diseases affecting millions worldwide. Inflammation is the [...]
A Forgotten Molecule Could Revive Failing Antifungal Drugs and Save Millions of Lives
Scientists have uncovered a way to make existing antifungal drugs work again against deadly, drug-resistant fungi. Fungal infections claim millions of lives worldwide each year, and current medical treatments are failing to keep pace. [...]
Scientists Trap Thyme’s Healing Power in Tiny Capsules
A new micro-encapsulation breakthrough could turn thyme’s powerful health benefits into safer, smarter nanodoses. Thyme extract is often praised for its wide range of health benefits, giving it a reputation as a natural medicinal [...]
Scientists Develop Spray-On Powder That Instantly Seals Life-Threatening Wounds
KAIST scientists have created a fast-acting, stable powder hemostat that stops bleeding in one second and could significantly improve survival in combat and emergency medicine. Severe blood loss remains the primary cause of death from [...]
Oceans Are Struggling To Absorb Carbon As Microplastics Flood Their Waters
New research points to an unexpected way plastic pollution may be influencing Earth’s climate system. A recent study suggests that microscopic plastic pollution is reducing the ocean’s capacity to take in carbon dioxide, a [...]
Molecular Manufacturing: The Future of Nanomedicine – New book from Frank Boehm
This book explores the revolutionary potential of atomically precise manufacturing technologies to transform global healthcare, as well as practically every other sector across society. This forward-thinking volume examines how envisaged Factory@Home systems might enable the cost-effective [...]
New Book! NanoMedical Brain/Cloud Interface – Explorations and Implications
New book from Frank Boehm, NanoappsMedical Inc Founder: This book explores the future hypothetical possibility that the cerebral cortex of the human brain might be seamlessly, safely, and securely connected with the Cloud via [...]
Global Health Care Equivalency in the Age of Nanotechnology, Nanomedicine and Artificial Intelligence
A new book by Frank Boehm, NanoappsMedical Inc. Founder. This groundbreaking volume explores the vision of a Global Health Care Equivalency (GHCE) system powered by artificial intelligence and quantum computing technologies, operating on secure [...]
Miller School Researchers Pioneer Nanovanilloid-Based Brain Cooling for Traumatic Injury
A multidisciplinary team at the University of Miami Miller School of Medicine has developed a breakthrough nanodrug platform that may prove beneficial for rapid, targeted therapeutic hypothermia after traumatic brain injury (TBI). Their work, published in ACS [...]
COVID-19 still claims more than 100,000 US lives each year
Centers for Disease Control and Prevention researchers report national estimates of 43.6 million COVID-19-associated illnesses and 101,300 deaths in the US during October 2022 to September 2023, plus 33.0 million illnesses and 100,800 deaths [...]















