In an article recently published in the journal ACS Applied Bio Materials, researchers discussed the utility of neutrophil cell membrane coating of a self-assembly nanoconstruct to enable high specificity for triple-negative breast cancer treatment.
Severity of Breast Cancer
With a 12% lifetime risk for women, breast cancer (BC) continues to be the second most prevalent cancer diagnosed in women in the United States. The majority of treatment for advanced breast cancer, metastatic breast cancer, and triple-negative breast cancer (TNBC) is the systemic injection of chemotherapeutic drugs because there are relatively few foods and drug administration (FDA)-approved medicines for such aggressive forms of the disease. The survival rate of patients was dramatically increased by chemotherapy using cytotoxic drugs. However, because of their non-specific distribution, chemotherapy might cause side effects such as induced neutropenia, cardiotoxicity, peripheral neurotoxicity, and myelosuppression.
Nanotechnology in Medical Treatment
The development of medication delivery systems based on nanotechnology has made considerable advancements in overcoming traditional constraints. Drug delivery methods based on nanoparticles (NP) have significantly advanced the field of cancer treatment.
The reticular endothelial system (RES), which clears these exogenous materials despite their therapeutic benefits, prevents tumor penetration by generating subtherapeutic concentrations in combination with a dense extracellular matrix. The use of artificial cell membranes or cell membranes obtained from nature can be included in synthetic constructs or NPs using the biomimetic NP method, a novel type of nanoplatform.
Numerous Cell Membrane-Coated Nanoparticles
Numerous cell membrane-coated NPs using membranes from platelets and nucleated cells are described in the literature. According to literature findings, NPs with cell membrane (MEM) coatings already actively express their self-markers, enabling them to adhere to tumor cells and locations.
Biomimetic Nanoparticles for the Treatment of Triple Negative Breast Cancer
In this article, the authors discussed developing a biomimetic NP construct with NPs encased in cell membranes that demonstrated a particular affinity for triple-negative breast cancer cells. The team created biomimetic supramolecular nanoconstructs with a core made of poly(vinyl pyrrolidone)-tannic acid (PVP-TA NPs/PVT NPs) and biofunctionalized with neutrophil cell membranes (PVT-NEU NPs). A PVT-NEU NP construct was synthesized, described, and tested in vitro and in vivo for enhanced targeting and therapeutic effects.
The team discussed the possibility of biomimetic NPs as a promising therapeutic choice for targeted medication delivery for advanced-stage breast cancer and other diseases of a similar nature. The creation of a perfect neutrophil-cloaked NP supramolecular construct for improved tumor-targeted administration was described. To find a suitable membrane-cloaked NP construct, various cellular binding interactions, biological tests, and bio-distribution/tumor targeting investigations were demonstrated. An ectopic xenograft tumor, the MDA-MB-231 breast cancer mouse model, was used to confirm the superior anti-tumor efficacy of the neutrophil membrane-cloaked NP construct.
The researchers demonstrated that the inherent membrane features of the proposed NPs, which resulted in improved circulation, self-binding capacity, and recognition/targeting capabilities of the source cells, allowed for successful targeting and tumor delivery overall. Due to cell-specific binding, these nanostructures not only enhanced binding to the initial tumor site but also could target the metastatic tumor.
Biological Characteristics of PVP-TA NPs
The core of PVP-TA NPs coated with activated human neutrophil membranes was present, according to the analysis of PVT-NEU NPs. The study’s findings supported PVTNEU NPs’ increased targeting and engagement with tumor cells, which enhanced a model therapeutic agent’s therapeutic activity. In contrast to PVT NPs, PVT-NEU NPs showed pronounced binding to MDA-MB-231 and MDA-MB-468 cells, while breast epithelial cells, MCF10A, displayed very little internalization, indicating a preference for absorption in cancer cells as opposed to noncancer cells. PTX-loaded PVT NP treatment dramatically reduced the IC50 values compared to unloaded PTX.
Compared to PTX alone in MDA-MB-231, PTX-loaded PVT-NEU NPs demonstrated a substantial change of 2.95-fold reduction. When compared to PVT NPs, PVT-NEU NPs showed significantly greater tumor retention of the ICG dye after 72 hours. PTX solution demonstrated a 52% reduction in tumor growth compared to control mice.
The results of the SDS-PAGE Coomassie stain indicated that LFA-1, MAC-1, PSGL-1, and PECAM-1 could be present. Although PVT-NEU NPs appeared to have fewer proteins than NEU, the presence of membrane proteins showed that these proteins were properly translocated to the surface of PVT NPs. When the NPs were loaded with the fluorescent dye C6, there was a greater uptake of PVTNEU NPs than PVT NPs both intracellularly and in situ.
Conclusions and Future Perspectives
In conclusion, this study described the creation, improvement, and characterization of a biomimetic nanoconstruct that combined cell membrane properties and provided the NPs with a biological identity for treating breast cancer cells.
In a xenograft mouse model, neutrophil membrane-coated nanoconstructs showed tumor retention, enhanced cellular targeting, and relatively less biodistribution in healthy organs. PTX-loaded PVT-NEU NPs showed better anti-migratory, antiproliferative, and anti-colonogenic activities. Comparing this nanoconstruct to uncoated NPs and the natural drug paclitaxel, it decreased systemic toxicity, showed better in vivo therapeutic effect, and good hemocompatibility.
The authors stated that this method of biomimetic-designed nanoconstructs has promise as a drug delivery system with the potential for enhanced therapeutic outcomes, active tumor targeting, and fewer adverse effects compared to traditional chemotherapy for the treatment of breast cancer. They mentioned that the results of this study could be used to inform the design of experiments for the targeted drug delivery to the tumor site for additional disease models with comparable traits.

News
New material discovery could revolutionize roll-out of global vaccinations
New raw vaccine materials that could make vaccines more accessible, sustainable, and ethical have been discovered. The results of the research have been published in Polymers. Adjuvants are vaccine ingredients that boost a person's immune response [...]
Scientists Develop Incredibly Lightweight Material 4 Times Stronger Than Steel
Researchers developed a light yet strong material by combining two unexpected ingredients—DNA and glass. Working at the nanoscale provides scientists with a deep understanding and precision in crafting and analyzing materials. In broader-scale production, and even [...]
New Implant Doctors Hope Will Cut Cancer Deaths in Half
Researchers at Houston's Rice University are developing an implant that could diminish deaths caused by cancer by half. The device will contain synthetically nurtured human cells and be embedded with sensors to keep track of cancer [...]
Machine learning helps predict drugs’ favorite subcellular haunts
Most drugs are small molecules that bind firmly to a specific target—some molecule in human cells that is involved in a disease—in order to work. For example, a cancer drug's target might be a [...]
Nanotechnology Breakthrough Could Help Treat Blindness
Scientists utilize nanotechnology to address a prevalent cause of vision loss. Scientists have discovered a way to use nanotechnology to create a 3D ‘scaffold’ to grow cells from the retina. This breakthrough could lead [...]
Decoding Women’s Health: Artificial Intelligence Revolutionizes PCOS Diagnosis
NIH study reviews 25 years of data and finds AI/ML can detect common hormone disorder. Artificial intelligence (AI) and machine learning (ML) can effectively detect and diagnose Polycystic Ovary Syndrome (PCOS), which is the most common [...]
Surprising Discovery Could Explain How Coronaviruses Jump Species
New insights are enhancing scientists’ efforts to stay ahead of COVID-19 and the next pandemic. Unexpected new insights into the ways COVID-19 infects cells could shed light on the virus’s adept ability to jump from one species to another [...]
A blood test for long Covid is possible, a study suggests
Scientists can now show key differences in the blood of those who recover from Covid — and those who don't. More than three years into the pandemic, the millions of people who have suffered [...]
FedEx for your cells: this biological delivery service could treat disease
Researchers want to know why cells produce tiny packages called vesicles — and whether these bundles could be used for therapy. Graça Raposo was a young postdoc in the Netherlands in 1996 when she [...]
New study on the genetic magnetization of living bacteria shows great potential for biomedicine
Magnetic bacteria possess extraordinary capabilities due to the magnetic nanoparticles, the magnetosomes, which are concatenated inside their cells. A research team at the University of Bayreuth has now transferred all of the approximately 30 [...]
Ultrathin Nanotech Promises to Help Tackle Antibiotic Resistance
Researchers have invented a nano-thin superbug-slaying material that could one day be integrated into wound dressings and implants to prevent or heal bacterial infections. The innovation – which has undergone advanced pre-clinical trials – [...]
Researchers Discover New Mnemomic Networks in the Brain
The medial temporal lobe (MTL) houses the human memory system. Broadly, it contains the hippocampus, parahippocampal cortex, perirhinal cortex, and entorhinal cortex. “One big challenge in studying the MTL is its great anatomical variability [...]
The Surprising Origin of a Deadly Hospital Infection
C. diff might not originate from external transmission but rather from within the infected patient themselves. Hospital staff dedicate significant effort to safeguard patients from infections during their hospital stay. Through practices ranging from [...]
Google AI breakthrough – huge step in finding genes that cause diseases
Google says it has made a significant step in identifying disease-causing genes, which could help spot rare genetic disorders. A new model named AlphaMissense is able to confidently classify 89 per cent of all [...]
New Study: Everyday Pleasures Can Boost Cognitive Performance
MINDWATCH study reveals cognitive peaks with everyday pleasures. Listening to music and drinking coffee are the sorts of everyday pleasures that can impact a person’s brain activity in ways that improve cognitive performance, including [...]
Moderna reveals new highly targeted COVID-19 vaccine mRNA-1283
Moderna has developed a new and improved version of its COVID-19 vaccine. The unique formulation (mRNA-1283) reduces the vaccine's content from the full-length SARS-CoV-2 spike protein to a narrowly focused encoding of just two [...]