Single-cell level protein analysis utilizing mass spectrometry (MS) with picolitre sample volumes needs sensitivity in the range of zeptomole to attomole. An article published recently in the journal Analytical Chemistry discussed an analytical pretreatment method based on a nanofluidic device to downsize the chemical unit operations to the range of femtoliter to picolitre volume in mass spectrometry.
Although mass spectrometry has achieved ultra-high sensitivity detection, preventing sample loss and interfacing between femtolitre to picolitre volumes for pretreatment remains a challenging issue. In this study, the researchers utilized a nanofluidic device to achieve a high-sensitivity detection at the MS interface. Followed by charging analyte molecules by the electrodes, the nanofluidic device helped in the conversion of liquid samples to femtoliter droplets.
After the generation of droplets by a nanofluidic device, an inertial force acted on the sample femtoliter volumed droplet to carry it with a controlled trajectory. Finally, the droplet gets injected into the mass spectrometer instrument. A module was designed and constructed for heat transfer which vaporized all the injected droplets into gas-phase ions. Detecting caffeine ions utilizing the designed MS interface based on a nanofluidic device showed a limit of detection (LOD) of 1.52 attomole.
Compared to the conventional mass spectrometry interface that utilizes electrospray ionization, the present interface based on a nanofluidic device achieved 290 times higher efficiency. Moreover, a 100% sample injection rate was achieved through the nanofluidic method, which resulted in a two-fold higher sensitivity. Thus, the developed methodology based on a nanofluidic device facilitated the analysis of samples in ultrasmall quantities with high sensitivity.
Mass Spectrometry Interface for High Detection Sensitivity
Nanofluidic studies fabricate nanofluidic devices or nanopatterning to achieve a small size. It can achieve nanofluidic manipulation for biological structures and nanoparticles at a nanoscale level. MS-based protein analysis at the single-cell level helps elucidate disease mechanisms and cellular expressions.
Nevertheless, these protein analysis processes need the integration of a pretreatment based on a nanofluidic device to prepare ultrasmall sample volumes before their introduction into a mass spectrometer to facilitate dispersion and prevent sample loss. While microfluidics allows chemical operations in 10 to 100 micromolar spaces, nanofluidics exploits 100−1000 nanomolar spaces with femtolitre to picolitre volumes.
Electrospray ionization (ESI) is a widely used MS interface, which involves applying high voltage to a liquid sample followed by spraying the sample through a capillary, via the electrical repulsive force for ionization. Thus, the sample dispersion by spraying caused by ESI reduces the rate of sample injection into the mass spectrometer, consequently reducing the sensitivity. To this end, nanoESI had reduced capillary size and was extensively used for enhanced sensitivity.
Moreover, MS interfaces utilizing ultrasonic waves and laser ablation to vaporize and eject liquid samples were reported. The piezoelectric interface is another method that shoots sample droplets like an inkjet printer. However, droplets of nanoliter volume are too large to produce gas-phase ions by vaporizing the sample solution.
Femtoliter-droplet MS Interface Utilizing Nanofluidic Device
In their previous work, the team developed a microfluidic device, which utilized a two-step airflow to convert the liquid sample into uniform droplets, followed by their ejection into the air with a controlled trajectory. The droplets generated in this study were of volume between 4 and 25 picolitres. However, this volume range was too large for vaporization.
In the present study, an MS interface based on a nanofluidic device was developed to generate ultrasmall droplets and achieve high-sensitivity analyses, wherein femtoliter-droplet shooter was utilized without sample dispersion. An analytical system was developed with a nanofluidic device integrated MS interface based on a single quadrupole mass spectrometer to prove this principle.
Through the MS interface, which was based on a nanofluidic device, femtoliter droplets were generated. The force that acted on the generated sample droplets carried them with a controlled trajectory and injected them into a mass spectrometer with 100% efficiency. Later, the constructed heat transfer module vaporized the droplets to produce gas-phase ions.
The constructed MS system integrated with an MS interface based on a nanofluidic device helped evaluate the MS detection sensitivity. Results were compared to that of conventional ESI-MS. The results confirmed that the constructed MS interface based on a nanofluidic device detected ultrasmall samples with ultrahigh sensitivity.
What Did the Study Find?
To summarize, the nanofluidic device-based MS interface method was developed to generate femtoliter droplets, which were ejected with a controlled trajectory to achieve high-sensitivity detection. Furthermore, the heat transfer thermal system achieved 100% vaporization of droplets injected into MS’s aperture.
The voltage applied increased the charge imposition efficiency in the sample liquid and the results revealed that the MS interface based on a nanofluidic device achieved high-sensitive MS detection. The ionized caffeine showed 290 times higher sensitivity of detection than conventional ESI due to the achieved femtoliter droplet via MS interface based on a nanofluidic device.

News
The CDC buried a measles forecast that stressed the need for vaccinations
This story was originally published on ProPublica, a nonprofit newsroom that investigates abuses of power. Sign up to receive our biggest stories as soon as they’re published. ProPublica — Leaders at the Centers for Disease Control and Prevention [...]
Light-Driven Plasmonic Microrobots for Nanoparticle Manipulation
A recent study published in Nature Communications presents a new microrobotic platform designed to improve the precision and versatility of nanoparticle manipulation using light. Led by Jin Qin and colleagues, the research addresses limitations in traditional [...]
Cancer’s “Master Switch” Blocked for Good in Landmark Study
Researchers discovered peptides that permanently block a key cancer protein once thought untreatable, using a new screening method to test their effectiveness inside cells. For the first time, scientists have identified promising drug candidates [...]
AI self-cloning claims: A new frontier or a looming threat?
Chinese scientists claim that some AI models can replicate themselves and protect against shutdown. Has artificial intelligence crossed the so-called red line? Chinese researchers have published two reports on arXiv claiming that some artificial [...]
New Drug Turns Human Blood Into Mosquito-Killing Weapon
Nitisinone, a drug for rare diseases, kills mosquitoes when present in human blood and may become a new tool to fight malaria, offering longer-lasting, environmentally safer effects than ivermectin. Controlling mosquito populations is a [...]
DNA Microscopy Creates 3D Maps of Life From the Inside Out
What if you could take a picture of every gene inside a living organism—not with light, but with DNA itself? Scientists at the University of Chicago have pioneered a revolutionary imaging technique called volumetric DNA microscopy. It builds [...]
Scientists Just Captured the Stunning Process That Shapes Chromosomes
Scientists at EMBL have captured how human chromosomes fold into their signature rod shape during cell division, using a groundbreaking method called LoopTrace. By observing overlapping DNA loops forming in high resolution, they revealed that large [...]
Bird Flu Virus Is Mutating Fast – Scientists Say Our Vaccines May Not Be Enough
H5N1 influenza is evolving rapidly, weakening the effectiveness of existing antibodies and increasing its potential threat to humans. Scientists at UNC Charlotte and MIT used high-performance computational modeling to analyze thousands of viral protein-antibody interactions, revealing [...]
Revolutionary Cancer Vaccine Targets All Solid Tumors
The method triggers immune responses that inhibit melanoma, triple-negative breast cancer, lung carcinoma, and ovarian cancer. Cancer treatment vaccines have been in development since 2010, when the first was approved for prostate cancer, followed [...]
Scientists Uncover Hidden Protein Driving Autoimmune Attacks
Scientists have uncovered a critical piece of the puzzle in autoimmune diseases: a protein that helps release immune response molecules. By studying an ultra-rare condition, researchers identified ArfGAP2 as a key player in immune [...]
Mediterranean neutrino observatory sets new limits on quantum gravity
Quantum gravity is the missing link between general relativity and quantum mechanics, the yet-to-be-discovered key to a unified theory capable of explaining both the infinitely large and the infinitely small. The solution to this [...]
Challenging Previous Beliefs: Japanese Scientists Discover Hidden Protector of Heart
A Japanese research team found that the oxidized form of glutathione (GSSG) may protect heart tissue by modifying a key protein, potentially offering a novel therapeutic approach for ischemic heart failure. A new study [...]
Millions May Have Long COVID – So Why Can’t They Get Diagnosed?
Millions of people in England may be living with Long Covid without even realizing it. A large-scale analysis found that nearly 10% suspect they might have the condition but remain uncertain, often due to [...]
Researchers Reveal What Happens to Your Brain When You Don’t Get Enough Sleep
What if poor sleep was doing more than just making you tired? Researchers have discovered that disrupted sleep in older adults interferes with the brain’s ability to clean out waste, leading to memory problems [...]
How to prevent chronic inflammation from zombie-like cells that accumulate with age
In humans and other multicellular organisms, cells multiply. This defining feature allows embryos to grow into adulthood, and enables the healing of the many bumps, bruises and scrapes along the way. Certain factors can [...]
Breakthrough for long Covid patients who lost sense of smell
A breakthrough nasal surgery has restored the sense of smell for a dozen long Covid patients. Experts at University College London Hospitals NHS Foundation Trust successfully employed a technique typically used for correcting blocked nasal passages, [...]