| A research team from Universität Hamburg and DESY has developed a new method to 3D print colloidal nanomaterials in the form of a so-called aerogel. This class of material is characterized by exceptional high porosity and opens versatile applications in catalysis, energy storage or sensor technology. | |
| In the journal Advanced Functional Materials (“Additive-Free, Gelled Nanoinks as a 3D Printing Toolbox for Hierarchically Structured Bulk Aerogels”), the researchers report how 3D printing was made possible by a refined treatment during the process. |
| Aerogels are macroscopic solids formed by a sponge-like, three-dimensional nanoparticle network and consist almost entirely of air-filled nanopores. The material has an exceptionally high surface area and can be endowed with different functional properties depending on the composition of the nanoscopic network. | |
| This characteristic makes aerogels very promising for thermal insulation but also for applications where chemical reactions need to be carried out on the nanoparticles’ surface, such as in catalysis, energy storage or sensing. | |
| “So far liquid dispersions of nanoparticles could only be processed into a solid aerogel via a casting process,” says Matthias Rebber, first author of the study, which was also supported by the Cluster of Excellence “CUI: Advanced Imaging of Matter” and the NANOHYBRID research training group at Universität Hamburg. The disadvantage of the casting process is that the gel cannot be reliably removed from the mold, leading to high scrap rates in production and enabling only simple geometries. | |
| In 3D printing, this mold is no longer needed. The researchers used gel-like inks based on TiO2 nanoparticles and pushed them through the fine printing needles of a 3D printer with the aid of a syringe pump. | |
| “A major challenge was to maintain the filigree nanoparticle network throughout the whole process,” explains Dorota Koziej, a professor at the Center for Hybrid Nanostructures (CHyN) at Universität Hamburg and a researcher in the Cluster of Excellence. | |
| When performed in ambient air, the thin filaments already dried within a few seconds which caused the nanoporous network to collapse. The researchers therefore looked for a new approach to process TiO2-nanoparticle based aerogels via 3D printing. As a result, they designed a liquid bath that serves as a medium for the gel-like ink during 3D printing and prevents the nanoporous network from being damaged by drying in air. | |
| In addition, the liquid contains a gelling agent that hardens the very soft ink after printing and allows to print complex geometries. | |
| These complex geometries are the key advantage of 3D printing over already established casting processes. | |
| “A hierarchical architecture that encompasses all length scales on the nano-, micro-, and macroscopic level is crucial to extract the maximum efficiency from the aerogel in its subsequent application,” says Dorota Koziej. | |
| To demonstrate this, the researchers additionally loaded the TiO2 aerogel with gold nanorods. This material can efficiently convert light into heat through plasmonic excitation, which could be exploited to accelerate catalytic reactions. | |
| “With our 3D printing method, we can selectively control the interaction of the aerogel with light and, for example, enhance the penetration depth into the material by a factor of four compared to unstructured materials,” adds Matthias Rebber. | |
| This experiment primarily served the researchers as a feasibility study and proved that functional properties such as photothermal heating of the gold nanorods can be structured by 3D printing. The next step is to extend the concept to other material combinations. | |
| “Nanomaterials are known for their extraordinary electrical, optical or even magnetic properties. We can intentionally adjust these characteristics during the chemical synthesis and thus adapt the nanomaterial to the application as a catalyst, battery or sensor,” says Dorota Koziej. | |
| Finding useful and applicable combinations is a goal for future work in the research project. Matthias Rebber is confident that this will succeed. | |
| “The beauty of our printing process is the modular principle in the ink formulation. We use the TiO2 nanoparticles as a basic framework and can already load this network with a wide range of nanomaterials. Due to the nanoporous backbone, we obtain a material that is not only lightweight and stable, but in addition, depending on the combination of materials, can also have different functional properties.” | |
| Besides TiO2 the aerogel backbone can in principle be made from any colloidal nanoparticle. | |
| “If we manage to transfer this concept to other classes of materials, there will be no limits to the creativity and subsequent application of our printing process.” |
News
Lipid nanoparticles discovered that can deliver mRNA directly into heart muscle cells
Cardiovascular disease continues to be the leading cause of death worldwide. But advances in heart-failure therapeutics have stalled, largely due to the difficulty of delivering treatments at the cellular level. Now, a UC Berkeley-led [...]
The basic mechanisms of visual attention emerged over 500 million years ago, study suggests
The brain does not need its sophisticated cortex to interpret the visual world. A new study published in PLOS Biology demonstrates that a much older structure, the superior colliculus, contains the necessary circuitry to perform the [...]
AI Is Overheating. This New Technology Could Be the Fix
Engineers have developed a passive evaporative cooling membrane that dramatically improves heat removal for electronics and data centers Engineers at the University of California San Diego have created an innovative cooling system designed to greatly enhance [...]
New nanomedicine wipes out leukemia in animal study
In a promising advance for cancer treatment, Northwestern University scientists have re-engineered the molecular structure of a common chemotherapy drug, making it dramatically more soluble and effective and less toxic. In the new study, [...]
Mystery Solved: Scientists Find Cause for Unexplained, Deadly Diseases
A study reveals that a protein called RPA is essential for maintaining chromosome stability by stimulating telomerase. New findings from the University of Wisconsin-Madison suggest that problems with a key protein that helps preserve chromosome stability [...]
Nanotech Blocks Infection and Speed Up Chronic Wound Recovery
A new nanotech-based formulation using quercetin and omega-3 fatty acids shows promise in halting bacterial biofilms and boosting skin cell repair. Scientists have developed a nanotechnology-based treatment to fight bacterial biofilms in wound infections. The [...]
Researchers propose five key questions for effective adoption of AI in clinical practice
While Artificial Intelligence (AI) can be a powerful tool that physicians can use to help diagnose their patients and has great potential to improve accuracy, efficiency and patient safety, it has its drawbacks. It [...]
Advancements and clinical translation of intelligent nanodrugs for breast cancer treatment
A comprehensive review in "Biofunct. Mater." meticulously details the most recent advancements and clinical translation of intelligent nanodrugs for breast cancer treatment. This paper presents an exhaustive overview of subtype-specific nanostrategies, the clinical benefits [...]
It’s Not “All in Your Head”: Scientists Develop Revolutionary Blood Test for Chronic Fatigue Syndrome
A 96% accurate blood test for ME/CFS could transform diagnosis and pave the way for future long COVID detection. Researchers from the University of East Anglia and Oxford Biodynamics have created a highly accurate [...]
How Far Can the Body Go? Scientists Find the Ultimate Limit of Human Endurance
Even the most elite endurance athletes can’t outrun biology. A new study finds that humans hit a metabolic ceiling at about 2.5 times their resting energy burn. When ultra-runners take on races that last [...]
World’s Rivers “Overdosing” on Human Antibiotics, Study Finds
Researchers estimate that approximately 8,500 tons of antibiotics enter river systems each year after passing through the human body and wastewater treatment processes. Rivers spanning millions of kilometers across the globe are contaminated with [...]
Yale Scientists Solve a Century-Old Brain Wave Mystery
Yale scientists traced gamma brain waves to thalamus-cortex interactions. The discovery could reveal how brain rhythms shape perception and disease. For more than a century, scientists have observed rhythmic waves of synchronized neuronal activity [...]
Can introducing peanuts early prevent allergies? Real-world data confirms it helps
New evidence from a large U.S. primary care network shows that early peanut introduction, endorsed in 2015 and 2017 guidelines, was followed by a marked decline in clinician-diagnosed peanut and overall food allergies among [...]
Nanoparticle blueprints reveal path to smarter medicines
Lipid nanoparticles (LNPs) are the delivery vehicles of modern medicine, carrying cancer drugs, gene therapies and vaccines into cells. Until recently, many scientists assumed that all LNPs followed more or less the same blueprint, [...]
How nanomedicine and AI are teaming up to tackle neurodegenerative diseases
When I first realized the scale of the challenge posed by neurodegenerative diseases, such as Alzheimer's, Parkinson's disease and amyotrophic lateral sclerosis (ALS), I felt simultaneously humbled and motivated. These disorders are not caused [...]
Self-Organizing Light Could Transform Computing and Communications
USC engineers have demonstrated a new kind of optical device that lets light organize its own route using the principles of thermodynamics. Instead of relying on switches or digital control, the light finds its own [...]















