A research team from Universität Hamburg and DESY has developed a new method to 3D print colloidal nanomaterials in the form of a so-called aerogel. This class of material is characterized by exceptional high porosity and opens versatile applications in catalysis, energy storage or sensor technology. | |
In the journal Advanced Functional Materials (“Additive-Free, Gelled Nanoinks as a 3D Printing Toolbox for Hierarchically Structured Bulk Aerogels”), the researchers report how 3D printing was made possible by a refined treatment during the process. |
Aerogels are macroscopic solids formed by a sponge-like, three-dimensional nanoparticle network and consist almost entirely of air-filled nanopores. The material has an exceptionally high surface area and can be endowed with different functional properties depending on the composition of the nanoscopic network. | |
This characteristic makes aerogels very promising for thermal insulation but also for applications where chemical reactions need to be carried out on the nanoparticles’ surface, such as in catalysis, energy storage or sensing. | |
“So far liquid dispersions of nanoparticles could only be processed into a solid aerogel via a casting process,” says Matthias Rebber, first author of the study, which was also supported by the Cluster of Excellence “CUI: Advanced Imaging of Matter” and the NANOHYBRID research training group at Universität Hamburg. The disadvantage of the casting process is that the gel cannot be reliably removed from the mold, leading to high scrap rates in production and enabling only simple geometries. | |
In 3D printing, this mold is no longer needed. The researchers used gel-like inks based on TiO2 nanoparticles and pushed them through the fine printing needles of a 3D printer with the aid of a syringe pump. | |
“A major challenge was to maintain the filigree nanoparticle network throughout the whole process,” explains Dorota Koziej, a professor at the Center for Hybrid Nanostructures (CHyN) at Universität Hamburg and a researcher in the Cluster of Excellence. | |
When performed in ambient air, the thin filaments already dried within a few seconds which caused the nanoporous network to collapse. The researchers therefore looked for a new approach to process TiO2-nanoparticle based aerogels via 3D printing. As a result, they designed a liquid bath that serves as a medium for the gel-like ink during 3D printing and prevents the nanoporous network from being damaged by drying in air. | |
In addition, the liquid contains a gelling agent that hardens the very soft ink after printing and allows to print complex geometries. | |
These complex geometries are the key advantage of 3D printing over already established casting processes. | |
“A hierarchical architecture that encompasses all length scales on the nano-, micro-, and macroscopic level is crucial to extract the maximum efficiency from the aerogel in its subsequent application,” says Dorota Koziej. | |
To demonstrate this, the researchers additionally loaded the TiO2 aerogel with gold nanorods. This material can efficiently convert light into heat through plasmonic excitation, which could be exploited to accelerate catalytic reactions. | |
“With our 3D printing method, we can selectively control the interaction of the aerogel with light and, for example, enhance the penetration depth into the material by a factor of four compared to unstructured materials,” adds Matthias Rebber. | |
This experiment primarily served the researchers as a feasibility study and proved that functional properties such as photothermal heating of the gold nanorods can be structured by 3D printing. The next step is to extend the concept to other material combinations. | |
“Nanomaterials are known for their extraordinary electrical, optical or even magnetic properties. We can intentionally adjust these characteristics during the chemical synthesis and thus adapt the nanomaterial to the application as a catalyst, battery or sensor,” says Dorota Koziej. | |
Finding useful and applicable combinations is a goal for future work in the research project. Matthias Rebber is confident that this will succeed. | |
“The beauty of our printing process is the modular principle in the ink formulation. We use the TiO2 nanoparticles as a basic framework and can already load this network with a wide range of nanomaterials. Due to the nanoporous backbone, we obtain a material that is not only lightweight and stable, but in addition, depending on the combination of materials, can also have different functional properties.” | |
Besides TiO2 the aerogel backbone can in principle be made from any colloidal nanoparticle. | |
“If we manage to transfer this concept to other classes of materials, there will be no limits to the creativity and subsequent application of our printing process.” |

News
Self-Organizing Light Could Transform Computing and Communications
USC engineers have demonstrated a new kind of optical device that lets light organize its own route using the principles of thermodynamics. Instead of relying on switches or digital control, the light finds its own [...]
Groundbreaking New Way of Measuring Blood Pressure Could Save Thousands of Lives
A new method that improves the accuracy of interpreting blood pressure measurements taken at the ankle could be vital for individuals who are unable to have their blood pressure measured on the arm. A newly developed [...]
Scientist tackles key roadblock for AI in drug discovery
The drug development pipeline is a costly and lengthy process. Identifying high-quality "hit" compounds—those with high potency, selectivity, and favorable metabolic properties—at the earliest stages is important for reducing cost and accelerating the path [...]
Nanoplastics with environmental coatings can sneak past the skin’s defenses
Plastic is ubiquitous in the modern world, and it's notorious for taking a long time to completely break down in the environment - if it ever does. But even without breaking down completely, plastic [...]
Chernobyl scientists discover black fungus feeding on deadly radiation
It looks pretty sinister, but it might actually be incredibly helpful When reactor number four in Chernobyl exploded, it triggered the worst nuclear disaster in history, one which the surrounding area still has not [...]
Long COVID Is Taking A Silent Toll On Mental Health, Here’s What Experts Say
Months after recovering from COVID-19, many people continue to feel unwell. They speak of exhaustion that doesn’t fade, difficulty breathing, or an unsettling mental haze. What’s becoming increasingly clear is that recovery from the [...]
Study Delivers Cancer Drugs Directly to the Tumor Nucleus
A new peptide-based nanotube treatment sneaks chemo into drug-resistant cancer cells, providing a unique workaround to one of oncology’s toughest hurdles. CiQUS researchers have developed a novel molecular strategy that allows a chemotherapy drug to [...]
Scientists Begin $14.2 Million Project To Decode the Body’s “Hidden Sixth Sense”
An NIH-supported initiative seeks to unravel how the nervous system tracks and regulates the body’s internal organs. How does your brain recognize when it’s time to take a breath, when your blood pressure has [...]
Scientists Discover a New Form of Ice That Shouldn’t Exist
Researchers at the European XFEL and DESY are investigating unusual forms of ice that can exist at room temperature when subjected to extreme pressure. Ice comes in many forms, even when made of nothing but water [...]
Nobel-winning, tiny ‘sponge crystals’ with an astonishing amount of inner space
The 2025 Nobel Prize in chemistry was awarded to Richard Robson, Susumu Kitagawa and Omar Yaghi on Oct. 8, 2025, for the development of metal-organic frameworks, or MOFs, which are tunable crystal structures with extremely [...]
Harnessing Green-Synthesized Nanoparticles for Water Purification
A new review reveals how plant- and microbe-derived nanoparticles can power next-gen water disinfection, delivering cleaner, safer water without the environmental cost of traditional treatments. A recent review published in Nanomaterials highlights the potential of green-synthesized nanomaterials (GSNMs) in [...]
Brainstem damage found to be behind long-lasting effects of severe Covid-19
Damage to the brainstem - the brain's 'control center' - is behind long-lasting physical and psychiatric effects of severe Covid-19 infection, a study suggests. Using ultra-high-resolution scanners that can see the living brain in [...]
CT scan changes over one year predict outcomes in fibrotic lung disease
Researchers at National Jewish Health have shown that subtle increases in lung scarring, detected by an artificial intelligence-based tool on CT scans taken one year apart, are associated with disease progression and survival in [...]
AI Spots Hidden Signs of Disease Before Symptoms Appear
Researchers suggest that examining the inner workings of cells more closely could help physicians detect diseases earlier and more accurately match patients with effective therapies. Researchers at McGill University have created an artificial intelligence tool capable of uncovering [...]
Breakthrough Blood Test Detects Head and Neck Cancer up to 10 Years Before Symptoms
Mass General Brigham’s HPV-DeepSeek test enables much earlier cancer detection through a blood sample, creating a new opportunity for screening HPV-related head and neck cancers. Human papillomavirus (HPV) is responsible for about 70% of [...]
Study of 86 chikungunya outbreaks reveals unpredictability in size and severity
The symptoms come on quickly—acute fever, followed by debilitating joint pain that can last for months. Though rarely fatal, the chikungunya virus, a mosquito-borne illness, can be particularly severe for high-risk individuals, including newborns and older [...]