Using lasers to precisely control white blood cells in living fish, researchers have demonstrated that some of the body’s native cells can be “remotely controlled” to accomplish a variety of tasks in a highly precise way. These tasks may someday include biomedical applications such as targeted drug delivery and the precise treatment of inflammatory diseases.
The research team, which included Baojun Li, PhD, and Xianchuang Zheng, PhD, from Jinan University in China, successfully used light-controlled neutrophil “microcrafts” to guide intercellular connections, deliver nanomedicines, and eliminate cell debris in a targeted way. They reported their results in an ACS Central Science article (“Optically Manipulated Neutrophils as Native Microcrafts in Vivo”).
The researchers’ current work overcomes these obstacles. They used neutrophils—cells already present in the body—to avoid setting off an immune reaction. The neutrophils also have the natural ability to migrate through blood vessels and into adjacent tissues.
“Unlike traditional medical microdevices, this neutrophil microcraft is free from artificial microstructures and invasive implantation processes,” the researchers pointed out. “It exhibits high biocompatibility [and] minor immunogenicity.”
Earlier studies had shown that neutrophils could be guided with lasers in lab dishes, moving them around as “neutrobots.” But until now, the feasibility of this approach had not been explored in living animals.
In the current study, the researchers maneuvered neutrophils in the tails of live zebrafish, using focused laser beams as remote optical tweezers. The light-driven microrobots could be moved up to a velocity of 1.3 µm/s, which is three times faster than a neutrophil naturally moves.
They used the optical tweezers to precisely and actively control the functions that neutrophils conduct as part of the immune system. For example, they moved a neutrobot through a blood vessel wall into the surrounding tissue. They manipulated another one to pick up and transport a plastic nanoparticle, showing its potential for carrying medicine. And when the researchers pushed a neutrobot toward red blood cell debris, it engulfed the pieces. Surprisingly, at the same time, a different neutrophil, which wasn’t controlled by a laser, tried to naturally remove the cellular debris.
This work paves the way for the development of microrobots for in vivo biomedical applications, such as the targeted delivery of drugs and the precise treatment of diseases. “This concept [holds] great promise for the active execution of complex medical tasks in vivo, with great potential utility in the treatment of inflammatory diseases,” concluded the researchers.

News
Our DNA May Evolve Much Faster Than Previously Thought
Rapidly mutating DNA regions were mapped using a multi-generational family and advanced sequencing tools. Understanding how human DNA changes over generations is crucial for estimating genetic disease risks and tracing our evolutionary history. However, some of [...]
AI therapy may help with mental health, but innovation should never outpace ethics
Mental health services around the world are stretched thinner than ever. Long wait times, barriers to accessing care and rising rates of depression and anxiety have made it harder for people to get timely help. As a result, governments and health care providers are [...]
Global life expectancy plunges as WHO warns of deepening health crisis Post-COVID
The World Health Organization (WHO) has sounded the alarm on the long-term health repercussions of the COVID-19 pandemic in its newly released World Health Statistics Report 2025. The report reveals a staggering decline in global [...]
Researchers map brain networks involved in word retrieval
How are we able to recall a word we want to say? This basic ability, called word retrieval, is often compromised in patients with brain damage. Interestingly, many patients who can name words they [...]
Melting Ice Is Changing the Color of the Ocean – Scientists Are Alarmed
Melting sea ice changes not only how much light enters the ocean, but also its color, disrupting marine photosynthesis and altering Arctic ecosystems in subtle but profound ways. As global warming causes sea ice in the [...]
Your Washing Machine Might Be Helping Antibiotic-Resistant Bacteria Spread
A new study reveals that biofilms in washing machines may contain potential pathogens and antibiotic resistance genes, posing possible risks for laundering healthcare workers’ uniforms at home. Washing healthcare uniforms at home could be [...]
Scientists Discover Hidden Cause of Alzheimer’s Hiding in Plain Sight
Researchers found the PHGDH gene directly causes Alzheimer’s and discovered a drug-like molecule, NCT-503, that may help treat the disease early by targeting the gene’s hidden function. A recent study has revealed that a gene previously [...]
How Brain Cells Talk: Inside the Complex Language of the Human Mind
Introduction The human brain contains nearly 86 billion neurons, constantly exchanging messages like an immense social media network, but neurons do not work alone – glial cells, neurotransmitters, receptors, and other molecules form a vast [...]
Oxford study reveals how COVID-19 vaccines prevent severe illness
A landmark study by scientists at the University of Oxford, has unveiled crucial insights into the way that COVID-19 vaccines mitigate severe illness in those who have been vaccinated. Despite the global success of [...]
Annual blood test could detect cancer earlier and save lives
A single blood test, designed to pick up chemical signals indicative of the presence of many different types of cancer, could potentially thwart progression to advanced disease while the malignancy is still at an early [...]
How the FDA opens the door to risky chemicals in America’s food supply
Lining the shelves of American supermarkets are food products with chemicals linked to health concerns. To a great extent, the FDA allows food companies to determine for themselves whether their ingredients and additives are [...]
Superbug crisis could get worse, killing nearly 40 million people by 2050
The number of lives lost around the world due to infections that are resistant to the medications intended to treat them could increase nearly 70% by 2050, a new study projects, further showing the [...]
How Can Nanomaterials Be Programmed for Different Applications?
Nanomaterials are no longer just small—they are becoming smart. Across fields like medicine, electronics, energy, and materials science, researchers are now programming nanomaterials to behave in intentional, responsive ways. These advanced materials are designed [...]
Microplastics Are Invading Our Arteries, and It Could Be Increasing Your Risk of Stroke
Higher levels of micronanoplastics were found in carotid artery plaque, especially in people with stroke symptoms, suggesting a potential new risk factor. People with plaque buildup in the arteries of their neck have been [...]
Gene-editing therapy shows early success in fighting advanced gastrointestinal cancers
Researchers at the University of Minnesota have completed a first-in-human clinical trial testing a CRISPR/Cas9 gene-editing technique to help the immune system fight advanced gastrointestinal (GI) cancers. The results, recently published in The Lancet Oncology, show encouraging [...]
Engineered extracellular vesicles facilitate delivery of advanced medicines
Graphic abstract of the development of VEDIC and VFIC systems for high efficiency intracellular protein delivery in vitro and in vivo. Credit: Nature Communications (2025). DOI: 10.1038/s41467-025-59377-y. https://www.nature.com/articles/s41467-025-59377-y Researchers at Karolinska Institutet have developed a technique [...]