A research team from Johns Hopkins Medicine and Johns Hopkins University has developed a machine-learning (ML) tool capable of predicting who has the highest probability of being naturally resistant to COVID-19 infection despite being exposed to SARS-CoV-2, the virus that causes it.
The study, published this week in PLOS One, aims to better understand the factors that influence COVID-19 resistance.
“If we can identify which people are naturally able to avoid infection by SARS-CoV-2, we may be able to learn — in addition to societal and behavioral factors — which genetic and environmental differences influence their defense against the virus,” said Karen (Kai-Wen) Yang, lead study author and a biomedical engineering graduate student in the Translational Informatics Research and Innovation Lab at Johns Hopkins University, in the press release. “That insight could lead to new preventive measures and more highly targeted treatments.”
To develop their model, the researchers gathered data from the Johns Hopkins COVID-19 Precision Medicine Analytics Platform Registry (JH-CROWN), which contains information for patients with a suspected or confirmed SARS-CoV-2 infection seen within the Johns Hopkins Health System, the press release states.
From this information, the research team selected patients who had received a COVID-19 test between June 10, 2020, and Dec. 15, 2020, and reported “potential exposure to the virus” as the reason for testing. Dec. 15 was chosen as the end date because it was just before large-scale COVID-19 vaccination efforts began in the US, which allowed researchers to avoid the confounding effects of vaccines, rather than natural resistance, on preventing COVID-19 infection.
The final cohort comprised 8,536 study participants who were divided into two groups: those who either did not share a household with any COVID-19 patients or whose household had 10 or more patients, and those who shared a residence with 10 or fewer people, with at least one being a COVID-19 patient.
The first group, consisting of 8,476 participants, served as the training and initial testing test, while the remaining 60 participants were grouped into a Household Index (HHI) Set, which served as a separate testing set.
EHR data from the cohort was analyzed using the Maximal-frequent All-confident pattern Selection Pattern-based Clustering (MASPC) algorithm, which combines patient demographic information, the relevant International Statistical Classification of Diseases and Related Health Problems (ICD) medical diagnostic codes, outpatient medication orders, and the number of comorbidities present for each patient.
“We hypothesized that MASPC would enable us to cluster patients with similar patterns in their data to define them as resistant and non-resistant to SARS-CoV-2, and with the hope that the algorithm would learn with each analysis how to improve the accuracy and reliability of future assignments,” explained co-senior study author Stuart Ray, MD, vice chair of medicine for data integrity and analytics, and professor of medicine at the Johns Hopkins University School of Medicine, in the press release. “This initial study using JH-CROWN data was conducted to give life to that hypothesis, a proof-of-concept trial of our statistical model to show that resistance to COVID-19 might be predictable based [on] a patient’s clinical and demographic profile.”
The researchers were able to identify 56 of these patterns, five of which captured who was most likely exposed to the virus.
“Looking for these patterns in HHI Set — the individuals most likely to have been exposed to SARS-CoV-2 in close quarters — and then statistically analyzing the results, our model’s best performance was 0.61,” says Ray. “Since a score of 0.5 shows only chance association between the prediction and reality, and 1 is 100% association, this shows the model has promise as a tool for identifying people with COVID-19 resistance who can be further studied.”
The researchers noted that the study has multiple limitations, such as potential bias from the self-reporting of COVID-19 exposure by participants, the small number of participants in the HHI group, the short timeframe of the study, and the possibility that participants may have taken tests for SARS-CoV-2 using home kits or at facilities outside the Johns Hopkins system, which would not have been recorded in the JH-CROWN database.

News
Advancing Pancreatic Cancer Treatment with Nanoparticle-Based Chemotherapy
Pancreatic cancer, a particularly lethal form of cancer and the fourth leading cause of cancer-related deaths in the western world, often remains undiagnosed until its advanced stages due to a lack of early symptoms. [...]
The ‘jigglings and wigglings of atoms’ reveal key aspects of COVID-19 virulence evolution
Richard Feynman famously stated, "Everything that living things do can be understood in terms of the jigglings and wigglings of atoms." This week, Nature Nanotechnology features a study that sheds new light on the evolution of the coronavirus [...]
AI system self-organizes to develop features of brains of complex organisms
Cambridge scientists have shown that placing physical constraints on an artificially-intelligent system—in much the same way that the human brain has to develop and operate within physical and biological constraints—allows it to develop features [...]
How Blind People Recognize Faces via Sound
Summary: A new study reveals that people who are blind can recognize faces using auditory patterns processed by the fusiform face area, a brain region crucial for face processing in sighted individuals. The study employed [...]
Treating tumors with engineered dendritic cells
Cancer biologists at EPFL, UNIGE, and the German Cancer Research Center (Heidelberg) have developed a novel immunotherapy that does not require knowledge of a tumor's antigenic makeup. The new results may pave the way [...]
Networking nano-biosensors for wireless communication in the blood
Biological computing machines, such as micro and nano-implants that can collect important information inside the human body, are transforming medicine. Yet, networking them for communication has proven challenging. Now, a global team, including EPFL [...]
Popular Hospital Disinfectant Ineffective Against Common Superbug
Research conducted during World Antimicrobial Awareness Week examines the effects of employing suggested chlorine-based chemicals to combat Clostridioides difficile, the leading cause of antibiotic-related illness in healthcare environments worldwide. A recent study reveals that a [...]
Subjectivity and the Evolution of AI Philosophy
An Historical Overview of the Philosophy of Artificial Intelligence by Anton Vokrug Many famous people in the philosophy of technology have tried to comprehend the essence of technology and link it to society and human [...]
How Lockdowns Shaped the Virus: AI Uncovers COVID-19’s Evolutionary Secrets
A new research study shows that human behavior, like lockdowns, influences the evolution of COVID-19, leading to strains that are more transmissible earlier in their lifecycle. Using artificial intelligence technology and mathematical modeling, a research [...]
Groundbreaking therapy approved: chances of cure for 7000 diseases:
Hereditary diseases are usually not curable. Now, however, an epochal turning point is taking place in medicine: For the first time ever, a therapy with the CRISPR/Cas9 gene scissors has received approval. According to [...]
Uncovering the Genetic Mystery: Why Some Never Show COVID-19 Symptoms
New study shows that common genetic variation among people is responsible for mediating SARS-CoV-2 asymptomatic infection. Have you ever wondered why some people never became sick from COVID-19? A study published recently in the journal Nature shows that common [...]
AI maps tumor geography for tailored treatments
Researchers have integrated AI approaches from satellite mapping and community ecology to develop a tool to interpret data obtained from tumor tissue imaging, with the aim of implementing a more individualized approach to cancer care. [...]
Lung cancer cells’ ‘memories’ suggest new strategy for improving treatment
A new understanding of lung cancer cells' "memories" suggests a new strategy for improving treatment, Memorial Sloan Kettering Cancer Center (MSK) researchers have found. Research from the lab of cancer biologist Tuomas Tammela, MD, Ph.D. [...]
Artificial sensor similar to a human fingerprint can recognize fine fabric textures
An artificial sensory system that is able to recognize fine textures—such as twill, corduroy and wool—with a high resolution, similar to a human finger, is reported in a Nature Communications paper. The findings may help improve the subtle [...]
How tiny hinges bend the infection-spreading spikes of a coronavirus
A coronavirus uses protein "spikes" to grab and infect cells. Despite their name, those spikes aren't stiff and pointy. They're shaped like chicken drumsticks with the meaty part facing out, and the meaty part [...]
A Scientist Says the Singularity Will Happen by 2031
“The singularity,” the moment where AI is no longer under human control, is less than a decade away—according to one AI expert. More resources than ever are being poured into the pursuit of artificial [...]