With their high surface area and enhanced physicochemical properties, nanomaterials play a critical role in drug delivery, consumer products, and environmental technologies. However, their nanoscale dimensions enable interactions with cellular components in complex and sometimes unexpected ways, potentially inducing oxidative stress, inflammation, or bioaccumulation. As their use expands, understanding these risks through nanotoxicity testing becomes essential.1
Why Assess Nanotoxicity?
Assessing nanotoxicity helps ensure the safe use of nanomaterials while protecting human health and the environment. Nanomaterials can enter the body through inhalation, ingestion, or injection. Once inside, they may accumulate in organs and disrupt cellular functions. Their presence in cosmetics, pharmaceuticals, and household goods also raises concerns about environmental exposure. Reliable assessment methods help identify potential hazards before widespread use.2
Methods of Nanotoxicity Assessment
In Vitro Methods
In vitro methods are widely used to assess nanotoxicity through controlled experiments on cell cultures. Cytotoxicity assays such as MTT (tetrazolium-based assays) and LDH (lactate dehydrogenase) release assays evaluate cell viability and membrane integrity.3
Genotoxicity tests, including comet and micronucleus assays, examine DNA damage and chromosomal alterations caused by nanoparticle exposure. By exposing specific cell lines, such as epithelial cells that model the skin, lungs, or gastrointestinal tract, these methods provide critical insights into how nanomaterials interact with different biological barriers.3
For instance, Collins et al. provide key recommendations for conducting in vitro comet assays with mammalian cell cultures. They suggest using non-cytotoxic concentrations, defined as less than 20 % cell viability loss, and recommend concentrations below 100–150 μg/mL for non-cytotoxic nanomaterials.
The selection of cell lines should align with the target organ and exposure route, ensuring relevant biological insights. To capture the full spectrum of nanoparticle interactions, both short-term (2–3 hours) and long-term (24-hour) exposure studies are advised.
Additionally, distinguishing between direct DNA interactions and oxidative stress-induced genotoxicity remains a crucial consideration.4
In Vivo Methods
In vivo studies assess how nanomaterials behave in living organisms. Rodent models help researchers track bioaccumulation and long-term effects on organs like the liver, kidneys, and brain.3 These tests use exposure routes that mimic real-world scenarios, such as inhalation, ingestion, and injection.
While in vivo testing provides valuable data, ethical concerns and species differences highlight the need for alternatives. Regulatory efforts increasingly focus on reducing animal testing by improving in vitro and computational models.3, 5
Computational Methods
Computational toxicology applies in silico models to predict nanotoxicity by analyzing the physicochemical properties of nanoparticles. Techniques such as Quantitative Nanostructure-Toxicity Relationship (QNTR) and Quantitative Structure-Activity Relationship (QSAR) modeling rely on descriptors like particle size, surface charge, aggregation state, and solubility to estimate biological interactions and toxic potential.6
These models offer an efficient alternative to traditional toxicity assessments by reducing dependence on animal studies, minimizing costs, and enabling high-throughput screening. By incorporating data from in vitro experiments, bioinformatics, and machine learning algorithms, computational approaches refine toxicity predictions and enhance our understanding of nanoparticle behavior within biological systems.5
Surface Characterization Techniques
The size, shape, and surface chemistry of nanoparticles influence their interactions with biological systems. Several techniques help researchers analyze these properties:
Scanning Electron Microscopy (SEM): SEM provides high-resolution images of nanoparticles, allowing detailed analysis of their size, shape, and surface morphology. By scanning a focused electron beam across the sample surface, SEM generates images based on the interaction of electrons with the sample. This technique is especially useful for identifying surface features, defects, and coatings.7
Atomic Force Microscopy (AFM): AFM provides three-dimensional imaging and precise measurements of surface properties such as roughness, stiffness, and adhesion strength. Unlike SEM, AFM does not require extensive sample preparation and can operate under ambient or liquid conditions, preserving the native state of nanoparticles. This makes it particularly valuable for studying nanoparticle interactions with biological membranes and their penetration into cells. AFM also quantifies forces between nanoparticles and biological systems, providing insights into their physical interactions and toxicity mechanisms.7
X-Ray Photoelectron Spectroscopy (XPS):XPS is used to analyze the surface chemistry of nanoparticles, including their elemental composition, oxidation states, and surface coatings. This technique is highly sensitive to the outermost layers of nanoparticles, making it ideal for studying functional groups and ligands that influence toxicity.7
Torelli et al. developed an XPS data correction method for non-planar surfaces, improving accuracy when analyzing nanoparticles as small as 20 nm. Such refinements help predict how surface modifications affect biological interactions.8
Protocols for Nanotoxicity Testing
Standardized Guidelines
The OECD Sponsorship Programme has assessed various nanomaterials to refine test methodologies, while European initiatives like NANOHARMONY and Gov4Nano focus on standardizing protocols across different regulatory frameworks. These efforts aim to improve test reproducibility and promote global data acceptance under the Mutual Acceptance of Data (MAD) principle.9
Testing Procedures
Nanotoxicity assessments combine in vitro, in vivo, and computational approaches. Testing procedures vary based on exposure routes (oral, dermal, or inhalation) and duration (acute vs. chronic).10
Advanced in vitro assays measure cytotoxicity, oxidative stress, and DNA damage, while in vivo studies track bioaccumulation and organ-specific effects. Newer methods like microfluidic systems and co-culture models enhance test accuracy by mimicking real physiological conditions.10
What Does the Future of Nanotoxicity Testing Look Like?
Despite progress, testing nanotoxicity remains complex. Nanomaterials vary in size, shape, and surface chemistry, making it hard to develop universal protocols. A lack of standardization also leads to inconsistencies across studies.11
Future efforts will focus on integrating advanced technologies. Predictive in silico models and high-throughput in vitro systems will likely play a bigger role in screening nanomaterials. Organ-on-a-chip models could further improve accuracy by replicating human tissue environments.11
Reference and Further Readings
1. Savage, DT.; Hilt, JZ.; Dziubla, TD. (2019). In Vitro Methods for Assessing Nanoparticle Toxicity. Nanotoxicity: Methods and protocols. https://link.springer.com/protocol/10.1007/978-1-4939-8916-4_1
2. Huang, H.-J.; Lee, Y.-H.; Hsu, Y.-H.; Liao, C.-T.; Lin, Y.-F.; Chiu, H.-W. (2021). Current Strategies in Assessment of Nanotoxicity: Alternatives to in Vivo Animal Testing. International journal of molecular sciences. https://www.mdpi.com/1422-0067/22/8/4216
3. Roberto, MM.; Christofoletti, CA. (2019). How to Assess Nanomaterial Toxicity? An Environmental and Human Health Approach. [Online] IntechOpen. https://www.intechopen.com/chapters/68905
4. Collins, A.; El Yamani, N.; Dusinska, M. (2017). Sensitive Detection of DNA Oxidation Damage Induced by Nanomaterials. Free Radical Biology and Medicine. https://www.sciencedirect.com/science/article/pii/S089158491730062X
5. Budama-Kilinc, Y.; Cakir-Koc, R.; Zorlu, T.; Ozdemir, B.; Karavelioglu, Z.; Egil, AC., Kecel-Gunduz, S. (2018). Assessment of Nano-Toxicity and Safety Profiles of Silver Nanoparticles. [Online] IntechOpen. https://www.intechopen.com/chapters/60486
6. Fourches, D.; Pu, D.; Tassa, C.; Weissleder, R.; Shaw, SY.; Mumper, RJ. Tropsha, A. (2010). Quantitative Nanostructure− Activity Relationship Modeling. ACS nano. https://pubmed.ncbi.nlm.nih.gov/20857979/
7. Gunsolus, IL.; Haynes, CL. (2016). Analytical Aspects of Nanotoxicology. Analytical chemistry. https://pubs.acs.org/doi/full/10.1021/acs.analchem.5b04221
8. Torelli, MD.; Putans, RA.; Tan, Y.; Lohse, SE.; Murphy, CJ.; Hamers, RJ. (2015). Quantitative Determination of Ligand Densities on Nanomaterials by X-Ray Photoelectron Spectroscopy. ACS applied materials & interfaces. https://pubs.acs.org/doi/full/10.1021/am507300x
9. Krug, HF.; Nau, K. (2022). Methods and Protocols in Nanotoxicology. Frontiers Media. https://www.frontiersin.org/journals/toxicology/articles/10.3389/ftox.2022.1093765/full
10. Handy, RD.; van den Brink, N.; Chappell, M.; Mühling, M.; Behra, R.; Dušinská, M.; Simpson, P.; Ahtiainen, J.; Jha, A. N.; Seiter, J. (2012). Practical Considerations for Conducting Ecotoxicity Test Methods with Manufactured Nanomaterials: What Have We Learnt So Far? Ecotoxicology. https://link.springer.com/article/10.1007/s10646-012-0862-y
11. Patel, RJ.; Alexander, A.; Puri, A.; Chatterjee, B. (2021). Current Challenges and Future Needs for Nanotoxicity and Nanosafety Assessment. Nanotechnology in Medicine: Toxicity and Safety. https://onlinelibrary.wiley.com/doi/abs/10.1002/9781119769897.ch14

News
Repurposed drugs could calm the immune system’s response to nanomedicine
An international study led by researchers at the University of Colorado Anschutz Medical Campus has identified a promising strategy to enhance the safety of nanomedicines, advanced therapies often used in cancer and vaccine treatments, [...]
Nano-Enhanced Hydrogel Strategies for Cartilage Repair
A recent article in Engineering describes the development of a protein-based nanocomposite hydrogel designed to deliver two therapeutic agents—dexamethasone (Dex) and kartogenin (KGN)—to support cartilage repair. The hydrogel is engineered to modulate immune responses and promote [...]
New Cancer Drug Blocks Tumors Without Debilitating Side Effects
A new drug targets RAS-PI3Kα pathways without harmful side effects. It was developed using high-performance computing and AI. A new cancer drug candidate, developed through a collaboration between Lawrence Livermore National Laboratory (LLNL), BridgeBio Oncology [...]
Scientists Are Pretty Close to Replicating the First Thing That Ever Lived
For 400 million years, a leading hypothesis claims, Earth was an “RNA World,” meaning that life must’ve first replicated from RNA before the arrival of proteins and DNA. Unfortunately, scientists have failed to find [...]
Why ‘Peniaphobia’ Is Exploding Among Young People (And Why We Should Be Concerned)
An insidious illness is taking hold among a growing proportion of young people. Little known to the general public, peniaphobia—the fear of becoming poor—is gaining ground among teens and young adults. Discover the causes [...]
Team finds flawed data in recent study relevant to coronavirus antiviral development
The COVID pandemic illustrated how urgently we need antiviral medications capable of treating coronavirus infections. To aid this effort, researchers quickly homed in on part of SARS-CoV-2's molecular structure known as the NiRAN domain—an [...]
Drug-Coated Neural Implants Reduce Immune Rejection
Summary: A new study shows that coating neural prosthetic implants with the anti-inflammatory drug dexamethasone helps reduce the body’s immune response and scar tissue formation. This strategy enhances the long-term performance and stability of electrodes [...]
Scientists discover cancer-fighting bacteria that ‘soak up’ forever chemicals in the body
A family of healthy bacteria may help 'soak up' toxic forever chemicals in the body, warding off their cancerous effects. Forever chemicals, also known as PFAS (per- and polyfluoroalkyl substances), are toxic chemicals that [...]
Johns Hopkins Researchers Uncover a New Way To Kill Cancer Cells
A new study reveals that blocking ribosomal RNA production rewires cancer cell behavior and could help treat genetically unstable tumors. Researchers at the Johns Hopkins Kimmel Cancer Center and the Department of Radiation Oncology and Molecular [...]
AI matches doctors in mapping lung tumors for radiation therapy
In radiation therapy, precision can save lives. Oncologists must carefully map the size and location of a tumor before delivering high-dose radiation to destroy cancer cells while sparing healthy tissue. But this process, called [...]
Scientists Finally “See” Key Protein That Controls Inflammation
Researchers used advanced microscopy to uncover important protein structures. For the first time, two important protein structures in the human body are being visualized, thanks in part to cutting-edge technology at the University of [...]
AI tool detects 9 types of dementia from a single brain scan
Mayo Clinic researchers have developed a new artificial intelligence (AI) tool that helps clinicians identify brain activity patterns linked to nine types of dementia, including Alzheimer's disease, using a single, widely available scan—a transformative [...]
Is plastic packaging putting more than just food on your plate?
New research reveals that common food packaging and utensils can shed microscopic plastics into our food, prompting urgent calls for stricter testing and updated regulations to protect public health. Beyond microplastics: The analysis intentionally [...]
Aging Spreads Through the Bloodstream
Summary: New research reveals that aging isn’t just a local cellular process—it can spread throughout the body via the bloodstream. A redox-sensitive protein called ReHMGB1, secreted by senescent cells, was found to trigger aging features [...]
AI and nanomedicine find rare biomarkers for prostrate cancer and atherosclerosis
Imagine a stadium packed with 75,000 fans, all wearing green and white jerseys—except one person in a solid green shirt. Finding that person would be tough. That's how hard it is for scientists to [...]
Are Pesticides Breeding the Next Pandemic? Experts Warn of Fungal Superbugs
Fungicides used in agriculture have been linked to an increase in resistance to antifungal drugs in both humans and animals. Fungal infections are on the rise, and two UC Davis infectious disease experts, Dr. George Thompson [...]